Abstract:As spiking neural networks (SNNs) gain traction in deploying neuromorphic computing solutions, protecting their intellectual property (IP) has become crucial. Without adequate safeguards, proprietary SNN architectures are at risk of theft, replication, or misuse, which could lead to significant financial losses for the owners. While IP protection techniques have been extensively explored for artificial neural networks (ANNs), their applicability and effectiveness for the unique characteristics of SNNs remain largely unexplored. In this work, we pioneer an investigation into adapting two prominent watermarking approaches, namely, fingerprint-based and backdoor-based mechanisms to secure proprietary SNN architectures. We conduct thorough experiments to evaluate the impact on fidelity, resilience against overwrite threats, and resistance to compression attacks when applying these watermarking techniques to SNNs, drawing comparisons with their ANN counterparts. This study lays the groundwork for developing neuromorphic-aware IP protection strategies tailored to the distinctive dynamics of SNNs.
Abstract:With the mainstream integration of machine learning into security-sensitive domains such as healthcare and finance, concerns about data privacy have intensified. Conventional artificial neural networks (ANNs) have been found vulnerable to several attacks that can leak sensitive data. Particularly, model inversion (MI) attacks enable the reconstruction of data samples that have been used to train the model. Neuromorphic architectures have emerged as a paradigm shift in neural computing, enabling asynchronous and energy-efficient computation. However, little to no existing work has investigated the privacy of neuromorphic architectures against model inversion. Our study is motivated by the intuition that the non-differentiable aspect of spiking neural networks (SNNs) might result in inherent privacy-preserving properties, especially against gradient-based attacks. To investigate this hypothesis, we propose a thorough exploration of SNNs' privacy-preserving capabilities. Specifically, we develop novel inversion attack strategies that are comprehensively designed to target SNNs, offering a comparative analysis with their conventional ANN counterparts. Our experiments, conducted on diverse event-based and static datasets, demonstrate the effectiveness of the proposed attack strategies and therefore questions the assumption of inherent privacy-preserving in neuromorphic architectures.