Abstract:This paper presents a novel approach for multi-label emotion detection, where Llama-3 is used to generate explanatory content that clarifies ambiguous emotional expressions, thereby enhancing RoBERTa's emotion classification performance. By incorporating explanatory context, our method improves F1-scores, particularly for emotions like fear, joy, and sadness, and outperforms text-only models. The addition of explanatory content helps resolve ambiguity, addresses challenges like overlapping emotional cues, and enhances multi-label classification, marking a significant advancement in emotion detection tasks.
Abstract:Text corpora are essential for training models used in tasks like summarization, translation, and large language models (LLMs). While various efforts have been made to collect monolingual and multilingual datasets in many languages, Persian has often been underrepresented due to limited resources for data collection and preprocessing. Existing Persian datasets are typically small and lack content diversity, consisting mainly of weblogs and news articles. This shortage of high-quality, varied data has slowed the development of NLP models and open-source LLMs for Persian. Since model performance depends heavily on the quality of training data, we address this gap by introducing the Matina corpus, a new Persian dataset of 72.9B tokens, carefully preprocessed and deduplicated to ensure high data quality. We further assess its effectiveness by training and evaluating transformer-based models on key NLP tasks. Both the dataset and preprocessing codes are publicly available, enabling researchers to build on and improve this resource for future Persian NLP advancements.