Abstract:We present a practical distillation approach to fine-tune LLMs for invoking tools in real-time applications. We focus on visual editing tasks; specifically, we modify images and videos by interpreting user stylistic requests, specified in natural language ("golden hour"), using an LLM to select the appropriate tools and their parameters to achieve the desired visual effect. We found that proprietary LLMs such as GPT-3.5-Turbo show potential in this task, but their high cost and latency make them unsuitable for real-time applications. In our approach, we fine-tune a (smaller) student LLM with guidance from a (larger) teacher LLM and behavioral signals. We introduce offline metrics to evaluate student LLMs. Both online and offline experiments show that our student models manage to match the performance of our teacher model (GPT-3.5-Turbo), significantly reducing costs and latency. Lastly, we show that fine-tuning was improved by 25% in low-data regimes using augmentation.
Abstract:Recently, Semi-Supervised Learning (SSL) has shown much promise in leveraging unlabeled data while being provided with very few labels. In this paper, we show that ignoring the labels altogether for whole epochs intermittently during training can significantly improve performance in the small sample regime. More specifically, we propose to train a network on two tasks jointly. The primary classification task is exposed to both the unlabeled and the scarcely annotated data, whereas the secondary task seeks to cluster the data without any labels. As opposed to hand-crafted pretext tasks frequently used in self-supervision, our clustering phase utilizes the same classification network and head in an attempt to relax the primary task and propagate the information from the labels without overfitting them. On top of that, the self-supervised technique of classifying image rotations is incorporated during the unsupervised learning phase to stabilize training. We demonstrate our method's efficacy in boosting several state-of-the-art SSL algorithms, significantly improving their results and reducing running time in various standard semi-supervised benchmarks, including 92.6% accuracy on CIFAR-10 and 96.9% on SVHN, using only 4 labels per class in each task. We also notably improve the results in the extreme cases of 1,2 and 3 labels per class, and show that features learned by our model are more meaningful for separating the data.
Abstract:The clustering of unlabeled raw images is a daunting task, which has recently been approached with some success by deep learning methods. Here we propose an unsupervised clustering framework, which learns a deep neural network in an end-to-end fashion, providing direct cluster assignments of images without additional processing. Multi-Modal Deep Clustering (MMDC), trains a deep network to align its image embeddings with target points sampled from a Gaussian Mixture Model distribution. The cluster assignments are then determined by mixture component association of image embeddings. Simultaneously, the same deep network is trained to solve an additional self-supervised task. This pushes the network to learn more meaningful image representations and stabilizes the training. Experimental results show that MMDC achieves or exceeds state-of-the-art performance on five challenging benchmarks. On natural image datasets we improve on previous results with significant margins of up to 11% absolute accuracy points, yielding an accuracy of 70% on CIFAR-10, 31% on CIFAR-100 and 61% on STL-10.