Abstract:To build a satisfying chatbot that has the ability of managing a goal-oriented multi-turn dialogue, accurate modeling of human conversation is crucial. In this paper we concentrate on the task of response selection for multi-turn human-computer conversation with a given context. Previous approaches show weakness in capturing information of rare keywords that appear in either or both context and correct response, and struggle with long input sequences. We propose Cross Convolution Network (CCN) and Multi Frequency word embedding to address both problems. We train several models using the Ubuntu Dialogue dataset which is the largest freely available multi-turn based dialogue corpus. We further build an ensemble model by averaging predictions of multiple models. We achieve a new state-of-the-art on this dataset with considerable improvements compared to previous best results.
Abstract:Personality have been found to predict many life outcomes, and there have been huge interests on automatic personality recognition from a speaker's utterance. Previously, we achieved accuracies between 37%-44% for three-way classification of high, medium or low for each of the Big Five personality traits (Openness to Experience, Conscientiousness, Extraversion, Agreeableness, Neuroticism). We show here that we can improve performance on this task by accounting for heterogeneity of gender and L1 in our data, which has English speech from female and male native speakers of Chinese and Standard American English (SAE). We experiment with personalizing models by L1 and gender and normalizing features by speaker, L1 group, and/or gender.