Abstract:Purpose: To develop and evaluate a deep learning model for general accelerated MRI reconstruction. Materials and Methods: This retrospective study built a magnetic resonance image processing transformer (MR-IPT) which includes multi-head-tails and a single shared window transformer main body. Three mutations of MR-IPT with different transformer structures were implemented to guide the design of our MR-IPT model. Pre-trained on the MRI set of RadImageNet including 672675 images with multiple anatomy categories, the model was further migrated and evaluated on fastMRI knee dataset with 25012 images for downstream reconstruction tasks. We performed comparison studies with three CNN-based conventional networks in zero- and few-shot learning scenarios. Transfer learning process was conducted on both MR-IPT and CNN networks to further validate the generalizability of MR-IPT. To study the model performance stability, we evaluated our model with various downstream dataset sizes ranging from 10 to 2500 images. Result: The MR-IPT model provided superior performance in multiple downstream tasks compared to conventional CNN networks. MR-IPT achieved a PSNR/SSIM of 26.521/0.6102 (4-fold) and 24.861/0.4996 (8-fold) in 10-epoch learning, surpassing UNet128 at 25.056/0.5832 (4-fold) and 22.984/0.4637 (8-fold). With the same large-scale pre-training, MR-IPT provided a 5% performance boost compared to UNet128 in zero-shot learning in 8-fold and 3% in 4-fold. Conclusion: MR-IPT framework benefits from its transformer-based structure and large-scale pre-training and can serve as a solid backbone in other downstream tasks with zero- and few-shot learning.
Abstract:Deep learning-based MRI reconstruction models have achieved superior performance these days. Most recently, diffusion models have shown remarkable performance in image generation, in-painting, super-resolution, image editing and more. As a generalized diffusion model, cold diffusion further broadens the scope and considers models built around arbitrary image transformations such as blurring, down-sampling, etc. In this paper, we propose a k-space cold diffusion model that performs image degradation and restoration in k-space without the need for Gaussian noise. We provide comparisons with multiple deep learning-based MRI reconstruction models and perform tests on a well-known large open-source MRI dataset. Our results show that this novel way of performing degradation can generate high-quality reconstruction images for accelerated MRI.
Abstract:Recent works have demonstrated success in MRI reconstruction using deep learning-based models. However, most reported approaches require training on a task-specific, large-scale dataset. Regularization by denoising (RED) is a general pipeline which embeds a denoiser as a prior for image reconstruction. The potential of RED has been demonstrated for multiple image-related tasks such as denoising, deblurring and super-resolution. In this work, we propose a regularization by neural style transfer (RNST) method to further leverage the priors from the neural transfer and denoising engine. This enables RNST to reconstruct a high-quality image from a noisy low-quality image with different image styles and limited data. We validate RNST with clinical MRI scans from 1.5T and 3T and show that RNST can significantly boost image quality. Our results highlight the capability of the RNST framework for MRI reconstruction and the potential for reconstruction tasks with limited data.
Abstract:The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem. This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image. Multiple deep learning-based structures have been proposed for MRI reconstruction using CS, both in the k-space and image domains as well as using unrolled optimization methods. However, the drawback of these structures is that they are not fully utilizing the information from both domains (k-space and image). Herein, we propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domain. We evaluate our method on a well-known open-source MRI dataset and a clinical MRI dataset of patients diagnosed with strokes from our institution to demonstrate the performance of our network. In addition to quantitative evaluation, we undertook a blinded comparison of image quality across networks performed by a subspecialty trained radiologist. Overall, we demonstrate that our network achieves a superior performance among others under multiple reconstruction tasks.