Purpose: To develop and evaluate a deep learning model for general accelerated MRI reconstruction. Materials and Methods: This retrospective study built a magnetic resonance image processing transformer (MR-IPT) which includes multi-head-tails and a single shared window transformer main body. Three mutations of MR-IPT with different transformer structures were implemented to guide the design of our MR-IPT model. Pre-trained on the MRI set of RadImageNet including 672675 images with multiple anatomy categories, the model was further migrated and evaluated on fastMRI knee dataset with 25012 images for downstream reconstruction tasks. We performed comparison studies with three CNN-based conventional networks in zero- and few-shot learning scenarios. Transfer learning process was conducted on both MR-IPT and CNN networks to further validate the generalizability of MR-IPT. To study the model performance stability, we evaluated our model with various downstream dataset sizes ranging from 10 to 2500 images. Result: The MR-IPT model provided superior performance in multiple downstream tasks compared to conventional CNN networks. MR-IPT achieved a PSNR/SSIM of 26.521/0.6102 (4-fold) and 24.861/0.4996 (8-fold) in 10-epoch learning, surpassing UNet128 at 25.056/0.5832 (4-fold) and 22.984/0.4637 (8-fold). With the same large-scale pre-training, MR-IPT provided a 5% performance boost compared to UNet128 in zero-shot learning in 8-fold and 3% in 4-fold. Conclusion: MR-IPT framework benefits from its transformer-based structure and large-scale pre-training and can serve as a solid backbone in other downstream tasks with zero- and few-shot learning.