Abstract:This paper presents policy-based motion planning for robotic systems. The motion planning literature has been mostly focused on open-loop trajectory planning which is followed by tracking online. In contrast, we solve the problem of path planning and controller synthesis simultaneously by solving the related feedback control problem. We present a novel incremental policy (iPolicy) algorithm for motion planning, which integrates sampling-based methods and set-valued optimal control methods to compute feedback controllers for the robotic system. In particular, we use sampling to incrementally construct the state space of the system. Asynchronous value iterations are performed on the sampled state space to synthesize the incremental policy feedback controller. We show the convergence of the estimates to the optimal value function in continuous state space. Numerical results with various different dynamical systems (including nonholonomic systems) verify the optimality and effectiveness of iPolicy.
Abstract:This paper studies a class of multi-robot coordination problems where a team of robots aim to reach their goal regions with minimum time and avoid collisions with obstacles and other robots. A novel numerical algorithm is proposed to identify the Pareto optimal solutions where no robot can unilaterally reduce its traveling time without extending others'. The consistent approximation of the algorithm in the epigraphical profile sense is guaranteed using set-valued numerical analysis. Simulations show the anytime property and increasing optimality of the proposed algorithm.