Abstract:Image steganography is the process of hiding secret data in a cover image by subtle perturbation. Recent studies show that it is feasible to use a fixed neural network for data embedding and extraction. Such Fixed Neural Network Steganography (FNNS) demonstrates favorable performance without the need for training networks, making it more practical for real-world applications. However, the stego-images generated by the existing FNNS methods exhibit high distortion, which is prone to be detected by steganalysis tools. To deal with this issue, we propose a Cover-separable Fixed Neural Network Steganography, namely Cs-FNNS. In Cs-FNNS, we propose a Steganographic Perturbation Search (SPS) algorithm to directly encode the secret data into an imperceptible perturbation, which is combined with an AI-generated cover image for transmission. Through accessing the same deep generative models, the receiver could reproduce the cover image using a pre-agreed key, to separate the perturbation in the stego-image for data decoding. such an encoding/decoding strategy focuses on the secret data and eliminates the disturbance of the cover images, hence achieving a better performance. We apply our Cs-FNNS to the steganographic field that hiding secret images within cover images. Through comprehensive experiments, we demonstrate the superior performance of the proposed method in terms of visual quality and undetectability. Moreover, we show the flexibility of our Cs-FNNS in terms of hiding multiple secret images for different receivers.
Abstract:Steganography is the art of hiding secret data into the cover media for covert communication. In recent years, more and more deep neural network (DNN)-based steganographic schemes are proposed to train steganographic networks for secret embedding and recovery, which are shown to be promising. Compared with the handcrafted steganographic tools, steganographic networks tend to be large in size. It raises concerns on how to imperceptibly and effectively transmit these networks to the sender and receiver to facilitate the covert communication. To address this issue, we propose in this paper a Purified and Unified Steganographic Network (PUSNet). It performs an ordinary machine learning task in a purified network, which could be triggered into steganographic networks for secret embedding or recovery using different keys. We formulate the construction of the PUSNet into a sparse weight filling problem to flexibly switch between the purified and steganographic networks. We further instantiate our PUSNet as an image denoising network with two steganographic networks concealed for secret image embedding and recovery. Comprehensive experiments demonstrate that our PUSNet achieves good performance on secret image embedding, secret image recovery, and image denoising in a single architecture. It is also shown to be capable of imperceptibly carrying the steganographic networks in a purified network. Code is available at \url{https://github.com/albblgb/PUSNet}
Abstract:Image steganography is the art of concealing secret information in images in a way that is imperceptible to unauthorized parties. Recent advances show that is possible to use a fixed neural network (FNN) for secret embedding and extraction. Such fixed neural network steganography (FNNS) achieves high steganographic performance without training the networks, which could be more useful in real-world applications. However, the existing FNNS schemes are vulnerable in the sense that anyone can extract the secret from the stego-image. To deal with this issue, we propose a key-based FNNS scheme to improve the security of the FNNS, where we generate key-controlled perturbations from the FNN for data embedding. As such, only the receiver who possesses the key is able to correctly extract the secret from the stego-image using the FNN. In order to improve the visual quality and undetectability of the stego-image, we further propose an adaptive perturbation optimization strategy by taking the perturbation cost into account. Experimental results show that our proposed scheme is capable of preventing unauthorized secret extraction from the stego-images. Furthermore, our scheme is able to generate stego-images with higher visual quality than the state-of-the-art FNNS scheme, especially when the FNN is a neural network for ordinary learning tasks.
Abstract:With the widespread applications of the deep neural network (DNN), how to covertly transmit the DNN models in public channels brings us the attention, especially for those trained for secret-learning tasks. In this paper, we propose deep network steganography for the covert communication of DNN models. Unlike the existing steganography schemes which focus on the subtle modification of the cover data to accommodate the secrets, our scheme is learning task oriented, where the learning task of the secret DNN model (termed as secret-learning task) is disguised into another ordinary learning task conducted in a stego DNN model (termed as stego-learning task). To this end, we propose a gradient-based filter insertion scheme to insert interference filters into the important positions in the secret DNN model to form a stego DNN model. These positions are then embedded into the stego DNN model using a key by side information hiding. Finally, we activate the interference filters by a partial optimization strategy, such that the generated stego DNN model works on the stego-learning task. We conduct the experiments on both the intra-task steganography and inter-task steganography (i.e., the secret and stego-learning tasks belong to the same and different categories), both of which demonstrate the effectiveness of our proposed method for covert communication of DNN models.
Abstract:Steganography is a technique for covert communication between two parties. With the rapid development of deep neural networks (DNN), more and more steganographic networks are proposed recently, which are shown to be promising to achieve good performance. Unlike the traditional handcrafted steganographic tools, a steganographic network is relatively large in size. It raises concerns on how to covertly transmit the steganographic network in public channels, which is a crucial stage in the pipeline of steganography in real world applications. To address such an issue, we propose a novel scheme for steganography of steganographic networks in this paper. Unlike the existing steganographic schemes which focus on the subtle modification of the cover data to accommodate the secrets. We propose to disguise a steganographic network (termed as the secret DNN model) into a stego DNN model which performs an ordinary machine learning task (termed as the stego task). During the model disguising, we select and tune a subset of filters in the secret DNN model to preserve its function on the secret task, where the remaining filters are reactivated according to a partial optimization strategy to disguise the whole secret DNN model into a stego DNN model. The secret DNN model can be recovered from the stego DNN model when needed. Various experiments have been conducted to demonstrate the advantage of our proposed method for covert communication of steganographic networks as well as general DNN models.