Abstract:Automatic image-based pavement distress detection and recognition are vital for pavement maintenance and management. However, existing deep learning-based methods largely omit the specific characteristics of pavement images, such as high image resolution and low distress area ratio, and are not end-to-end trainable. In this paper, we present a series of simple yet effective end-to-end deep learning approaches named Weakly Supervised Patch Label Inference Networks (WSPLIN) for efficiently addressing these tasks under various application settings. To fully exploit the resolution and scale information, WSPLIN first divides the pavement image under different scales into patches with different collection strategies and then employs a Patch Label Inference Network (PLIN) to infer the labels of these patches. Notably, we design a patch label sparsity constraint based on the prior knowledge of distress distribution, and leverage the Comprehensive Decision Network (CDN) to guide the training of PLIN in a weakly supervised way. Therefore, the patch labels produced by PLIN provide interpretable intermediate information, such as the rough location and the type of distress. We evaluate our method on a large-scale bituminous pavement distress dataset named CQU-BPDD. Extensive results demonstrate the superiority of our method over baselines in both performance and efficiency.