Abstract:Spatio-temporal action detection in videos is typically addressed in a fully-supervised setup with manual annotation of training videos required at every frame. Since such annotation is extremely tedious and prohibits scalability, there is a clear need to minimize the amount of manual supervision. In this work we propose a unifying framework that can handle and combine varying types of less-demanding weak supervision. Our model is based on discriminative clustering and integrates different types of supervision as constraints on the optimization. We investigate applications of such a model to training setups with alternative supervisory signals ranging from video-level class labels over temporal points or sparse action bounding boxes to the full per-frame annotation of action bounding boxes. Experiments on the challenging UCF101-24 and DALY datasets demonstrate competitive performance of our method at a fraction of supervision used by previous methods. The flexibility of our model enables joint learning from data with different levels of annotation. Experimental results demonstrate a significant gain by adding a few fully supervised examples to otherwise weakly labeled videos.
Abstract:This paper addresses spatio-temporal localization of human actions in video. In order to localize actions in time, we propose a recurrent localization network (RecLNet) designed to model the temporal structure of actions on the level of person tracks. Our model is trained to simultaneously recognize and localize action classes in time and is based on two layer gated recurrent units (GRU) applied separately to two streams, i.e. appearance and optical flow streams. When used together with state-of-the-art person detection and tracking, our model is shown to improve substantially spatio-temporal action localization in videos. The gain is shown to be mainly due to improved temporal localization. We evaluate our method on two recent datasets for spatio-temporal action localization, UCF101-24 and DALY, demonstrating a significant improvement of the state of the art.
Abstract:This work targets human action recognition in video. While recent methods typically represent actions by statistics of local video features, here we argue for the importance of a representation derived from human pose. To this end we propose a new Pose-based Convolutional Neural Network descriptor (P-CNN) for action recognition. The descriptor aggregates motion and appearance information along tracks of human body parts. We investigate different schemes of temporal aggregation and experiment with P-CNN features obtained both for automatically estimated and manually annotated human poses. We evaluate our method on the recent and challenging JHMDB and MPII Cooking datasets. For both datasets our method shows consistent improvement over the state of the art.