Spatio-temporal action detection in videos is typically addressed in a fully-supervised setup with manual annotation of training videos required at every frame. Since such annotation is extremely tedious and prohibits scalability, there is a clear need to minimize the amount of manual supervision. In this work we propose a unifying framework that can handle and combine varying types of less-demanding weak supervision. Our model is based on discriminative clustering and integrates different types of supervision as constraints on the optimization. We investigate applications of such a model to training setups with alternative supervisory signals ranging from video-level class labels over temporal points or sparse action bounding boxes to the full per-frame annotation of action bounding boxes. Experiments on the challenging UCF101-24 and DALY datasets demonstrate competitive performance of our method at a fraction of supervision used by previous methods. The flexibility of our model enables joint learning from data with different levels of annotation. Experimental results demonstrate a significant gain by adding a few fully supervised examples to otherwise weakly labeled videos.