Abstract:Steady-state visually evoked potentials (SSVEP)-based brain-computer interfaces (BCIs) are widely used due to their high signal-to-noise ratio and user-friendliness. Accurate decoding of SSVEP signals is crucial for interpreting user intentions in BCI applications. However, signal variability across subjects and the costly user-specific annotation limit recognition performance. Therefore, we propose a novel cross-subject domain adaptation method built upon the self-training paradigm. Specifically, a Filter-Bank Euclidean Alignment (FBEA) strategy is designed to exploit frequency information from SSVEP filter banks. Then, we propose a Cross-Subject Self-Training (CSST) framework consisting of two stages: Pre-Training with Adversarial Learning (PTAL), which aligns the source and target distributions, and Dual-Ensemble Self-Training (DEST), which refines pseudo-label quality. Moreover, we introduce a Time-Frequency Augmented Contrastive Learning (TFA-CL) module to enhance feature discriminability across multiple augmented views. Extensive experiments on the Benchmark and BETA datasets demonstrate that our approach achieves state-of-the-art performance across varying signal lengths, highlighting its superiority.
Abstract:Force estimation is the core indicator for evaluating the performance of tactile sensors, and it is also the key technical path to achieve precise force feedback mechanisms. This study proposes a design method for a visual tactile sensor (VBTS) that integrates a magnetic perception mechanism, and develops a new tactile sensor called MagicGel. The sensor uses strong magnetic particles as markers and captures magnetic field changes in real time through Hall sensors. On this basis, MagicGel achieves the coordinated optimization of multimodal perception capabilities: it not only has fast response characteristics, but also can perceive non-contact status information of home electronic products. Specifically, MagicGel simultaneously analyzes the visual characteristics of magnetic particles and the multimodal data of changes in magnetic field intensity, ultimately improving force estimation capabilities.