Abstract:The Transiting Exoplanet Survey Satellite (TESS) is surveying a large fraction of the sky, generating a vast database of photometric time series data that requires thorough analysis to identify exoplanetary transit signals. Automated learning approaches have been successfully applied to identify transit signals. However, most existing methods focus on the classification and validation of candidates, while few efforts have explored new techniques for the search of candidates. To search for new exoplanet transit candidates, we propose an approach to identify exoplanet transit signals without the need for phase folding or assuming periodicity in the transit signals, such as those observed in multi-transit light curves. To achieve this, we implement a new neural network inspired by Transformers to directly process Full Frame Image (FFI) light curves to detect exoplanet transits. Transformers, originally developed for natural language processing, have recently demonstrated significant success in capturing long-range dependencies compared to previous approaches focused on sequential data. This ability allows us to employ multi-head self-attention to identify exoplanet transit signals directly from the complete light curves, combined with background and centroid time series, without requiring prior transit parameters. The network is trained to learn characteristics of the transit signal, like the dip shape, which helps distinguish planetary transits from other variability sources. Our model successfully identified 214 new planetary system candidates, including 122 multi-transit light curves, 88 single-transit and 4 multi-planet systems from TESS sectors 1-26 with a radius > 0.27 $R_{\mathrm{Jupiter}}$, demonstrating its ability to detect transits regardless of their periodicity.
Abstract:The Transiting Exoplanet Survey Satellite (TESS) mission measured light from stars in ~85% of the sky throughout its two-year primary mission, resulting in millions of TESS 30-minute cadence light curves to analyze in the search for transiting exoplanets. To search this vast dataset, we aim to provide an approach that is both computationally efficient, produces highly performant predictions, and minimizes the required human search effort. We present a convolutional neural network that we train to identify short period variables. To make a prediction for a given light curve, our network requires no prior target parameters identified using other methods. Our network performs inference on a TESS 30-minute cadence light curve in ~5ms on a single GPU, enabling large scale archival searches. We present a collection of 14156 short-period variables identified by our network. The majority of our identified variables fall into two prominent populations, one of short-period main sequence binaries and another of Delta Scuti stars. Our neural network model and related code is additionally provided as open-source code for public use and extension.
Abstract:The Transiting Exoplanet Survey Satellite (TESS) mission measured light from stars in ~75% of the sky throughout its two year primary mission, resulting in millions of TESS 30-minute cadence light curves to analyze in the search for transiting exoplanets. To search this vast data trove for transit signals, we aim to provide an approach that is both computationally efficient and produces highly performant predictions. This approach minimizes the required human search effort. We present a convolutional neural network, which we train to identify planetary transit signals and dismiss false positives. To make a prediction for a given light curve, our network requires no prior transit parameters identified using other methods. Our network performs inference on a TESS 30-minute cadence light curve in ~5ms on a single GPU, enabling large scale archival searches. We present 181 new planet candidates identified by our network, which pass subsequent human vetting designed to rule out false positives. Our neural network model is additionally provided as open-source code for public use and extension.
Abstract:Gatherings of thousands to millions of people frequently occur for an enormous variety of events, and automated counting of these high-density crowds is useful for safety, management, and measuring significance of an event. In this work, we show that the regularly accepted labeling scheme of crowd density maps for training deep neural networks is less effective than our alternative inverse k-nearest neighbor (i$k$NN) maps, even when used directly in existing state-of-the-art network structures. We also provide a new network architecture MUD-i$k$NN, which uses multi-scale upsampling via transposed convolutions to take full advantage of the provided i$k$NN labeling. This upsampling combined with the i$k$NN maps further improves crowd counting accuracy. Our new network architecture performs favorably in comparison with the state-of-the-art. However, our labeling and upsampling techniques are generally applicable to existing crowd counting architectures.
Abstract:In this work, we generalize semi-supervised generative adversarial networks (GANs) from classification problems to regression problems. In the last few years, the importance of improving the training of neural networks using semi-supervised training has been demonstrated for classification problems. With probabilistic classification being a subset of regression problems, this generalization opens up many new possibilities for the use of semi-supervised GANs as well as presenting an avenue for a deeper understanding of how they function. We first demonstrate the capabilities of semi-supervised regression GANs on a toy dataset which allows for a detailed understanding of how they operate in various circumstances. This toy dataset is used to provide a theoretical basis of the semi-supervised regression GAN. We then apply the semi-supervised regression GANs to the real-world application of age estimation from single images. We perform extensive tests of what accuracies can be achieved with significantly reduced annotated data. Through the combination of the theoretical example and real-world scenario, we demonstrate how semi-supervised GANs can be generalized to regression problems.