Abstract:Similarity measures for time series are important problems for time series classification. To handle the nonlinear time distortions, Dynamic Time Warping (DTW) has been widely used. However, DTW is not learnable and suffers from a trade-off between robustness against time distortion and discriminative power. In this paper, we propose a neural network model for task-adaptive time warping. Specifically, we use the attention model, called the bipartite attention model, to develop an explicit time warping mechanism with greater distortion invariance. Unlike other learnable models using DTW for warping, our model predicts all local correspondences between two time series and is trained based on metric learning, which enables it to learn the optimal data-dependent warping for the target task. We also propose to induce pre-training of our model by DTW to improve the discriminative power. Extensive experiments demonstrate the superior effectiveness of our model over DTW and its state-of-the-art performance in online signature verification.
Abstract:Deep time series metric learning is challenging due to the difficult trade-off between temporal invariance to nonlinear distortion and discriminative power in identifying non-matching sequences. This paper proposes a novel neural network-based approach for robust yet discriminative time series classification and verification. This approach adapts a parameterized attention model to time warping for greater and more adaptive temporal invariance. It is robust against not only local but also large global distortions, so that even matching pairs that do not satisfy the monotonicity, continuity, and boundary conditions can still be successfully identified. Learning of this model is further guided by dynamic time warping to impose temporal constraints for stabilized training and higher discriminative power. It can learn to augment the inter-class variation through warping, so that similar but different classes can be effectively distinguished. We experimentally demonstrate the superiority of the proposed approach over previous non-parametric and deep models by combining it with a deep online signature verification framework, after confirming its promising behavior in single-letter handwriting classification on the Unipen dataset.
Abstract:Designing fonts requires a great deal of time and effort. It requires professional skills, such as sketching, vectorizing, and image editing. Additionally, each letter has to be designed individually. In this paper, we will introduce a method to create fonts automatically. In our proposed method, the difference of font styles between two different fonts is found and transferred to another font using neural style transfer. Neural style transfer is a method of stylizing the contents of an image with the styles of another image. We proposed a novel neural style difference and content difference loss for the neural style transfer. With these losses, new fonts can be generated by adding or removing font styles from a font. We provided experimental results with various combinations of input fonts and discussed limitations and future development for the proposed method.
Abstract:Making decorated logos requires image editing skills, without sufficient skills, it could be a time-consuming task. While there are many on-line web services to make new logos, they have limited designs and duplicates can be made. We propose using neural style transfer with clip art and text for the creation of new and genuine logos. We introduce a new loss function based on distance transform of the input image, which allows the preservation of the silhouettes of text and objects. The proposed method constrains style transfer only around the designated area. We demonstrate the characteristics of proposed method. Finally, we show the results of logo generation with various input images.