Abstract:A recent body of work addresses safety constraints in explore-and-exploit systems. Such constraints arise where, for example, exploration is carried out by individuals whose welfare should be balanced with overall welfare. In this paper, we adopt a model inspired by recent work on a bandit-like setting for recommendations. We contribute to this line of literature by introducing a safety constraint that should be respected in every round and determines that the expected value in each round is above a given threshold. Due to our modeling, the safe explore-and-exploit policy deserves careful planning, or otherwise, it will lead to sub-optimal welfare. We devise an asymptotically optimal algorithm for the setting and analyze its instance-dependent convergence rate.
Abstract:Recommendation systems often face exploration-exploitation tradeoffs: the system can only learn about the desirability of new options by recommending them to some user. Such systems can thus be modeled as multi-armed bandit settings; however, users are self-interested and cannot be made to follow recommendations. We ask whether exploration can nevertheless be performed in a way that scrupulously respects agents' interests---i.e., by a system that acts as a fiduciary. More formally, we introduce a model in which a recommendation system faces an exploration-exploitation tradeoff under the constraint that it can never recommend any action that it knows yields lower reward in expectation than an agent would achieve if it acted alone. Our main contribution is a positive result: an asymptotically optimal, incentive compatible, and ex-ante individually rational recommendation algorithm.