Abstract:This paper introduces a biochemical vision-and-language dataset, which consists of 24 egocentric experiment videos, corresponding protocols, and video-and-language alignments. The key challenge in the wet-lab domain is detecting equipment, reagents, and containers is difficult because the lab environment is scattered by filling objects on the table and some objects are indistinguishable. Therefore, previous studies assume that objects are manually annotated and given for downstream tasks, but this is costly and time-consuming. To address this issue, this study focuses on Micro QR Codes to detect objects automatically. From our preliminary study, we found that detecting objects only using Micro QR Codes is still difficult because the researchers manipulate objects, causing blur and occlusion frequently. To address this, we also propose a novel object labeling method by combining a Micro QR Code detector and an off-the-shelf hand object detector. As one of the applications of our dataset, we conduct the task of generating protocols from experiment videos and find that our approach can generate accurate protocols.