Abstract:Diffusion models excel in image generation but lack detailed semantic control using text prompts. Additional techniques have been developed to address this limitation. However, conditioning diffusion models solely on text-based descriptions is challenging due to ambiguity and lack of structure. In contrast, scene graphs offer a more precise representation of image content, making them superior for fine-grained control and accurate synthesis in image generation models. The amount of image and scene-graph data is sparse, which makes fine-tuning large diffusion models challenging. We propose multiple approaches to tackle this problem using ControlNet and Gated Self-Attention. We were able to show that using out proposed methods it is possible to generate images from scene graphs with much higher quality, outperforming previous methods. Our source code is publicly available on https://github.com/FrankFundel/SGCond
Abstract:Automatically identifying bat species from their echolocation calls is a difficult but important task for monitoring bats and the ecosystem they live in. Major challenges in automatic bat call identification are high call variability, similarities between species, interfering calls and lack of annotated data. Many currently available models suffer from relatively poor performance on real-life data due to being trained on single call datasets and, moreover, are often too slow for real-time classification. Here, we propose a Transformer architecture for multi-label classification with potential applications in real-time classification scenarios. We train our model on synthetically generated multi-species recordings by merging multiple bats calls into a single recording with multiple simultaneous calls. Our approach achieves a single species accuracy of 88.92% (F1-score of 84.23%) and a multi species macro F1-score of 74.40% on our test set. In comparison to three other tools on the independent and publicly available dataset ChiroVox, our model achieves at least 25.82% better accuracy for single species classification and at least 6.9% better macro F1-score for multi species classification.