Abstract:We propose an informed baseline to help disentangle the various contextual factors of influence in this type of case studies. For this purpose, we analysed the correlation between the given metadata and the self-assigned personality trait scores and developed a model based solely on this information. Further, we compared the performance of this informed baseline with models based on state-of-the-art visual, linguistic and audio features. For the present dataset, a model trained solely on simple metadata features (age, gender and number of sessions) proved to have superior or similar performance when compared with simple audio, linguistic or visual features-based systems.
Abstract:Advances in animal motion tracking and pose recognition have been a game changer in the study of animal behavior. Recently, an increasing number of works go 'deeper' than tracking, and address automated recognition of animals' internal states such as emotions and pain with the aim of improving animal welfare, making this a timely moment for a systematization of the field. This paper provides a comprehensive survey of computer vision-based research on recognition of affective states and pain in animals, addressing both facial and bodily behavior analysis. We summarize the efforts that have been presented so far within this topic -- classifying them across different dimensions, highlight challenges and research gaps, and provide best practice recommendations for advancing the field, and some future directions for research.