Abstract:This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions. Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations. At the same time, the importance of each slice in decision-making is learned, allowing the generation of a voxel-level attention map to produces an explainable MRI. To test our method and ensure the reproducibility of our results, we chose a standardized collection of MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). On this dataset, our method significantly outperforms state-of-the-art methods in (i) distinguishing AD from cognitive normal (CN) with an accuracy of 0.856 and Matthew's correlation coefficient (MCC) of 0.712, representing improvements of 2.4\% and 5.3\% respectively over the second-best, and (ii) in the prognostic task of discerning stable from progressive mild cognitive impairment (MCI) with an accuracy of 0.725 and MCC of 0.443, showing improvements of 10.2\% and 20.5\% respectively over the second-best. We achieved this prognostic result by adopting a double transfer learning strategy, which enhanced sensitivity to morphological changes and facilitated early-stage AD detection. With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions: the \emph{hippocampus}, the \emph{amygdala}, the \emph{parahippocampal}, and the \emph{inferior lateral ventricles}. All these areas are clinically associated with AD development. Furthermore, our approach consistently found the same AD-related areas across different cross-validation folds, proving its robustness and precision in highlighting areas that align closely with known pathological markers of the disease.
Abstract:Alzheimer's disease is one of the most incisive illnesses among the neurodegenerative ones, and it causes a progressive decline in cognitive abilities that, in the worst cases, becomes severe enough to interfere with daily life. Currently, there is no cure, so an early diagnosis is strongly needed to try and slow its progression through medical treatments. Handwriting analysis is considered a potential tool for detecting and understanding certain neurological conditions, including Alzheimer's disease. While handwriting analysis alone cannot provide a definitive diagnosis of Alzheimer's, it may offer some insights and be used for a comprehensive assessment. The Sigma-lognormal model is conceived for movement analysis and can also be applied to handwriting. This model returns a set of lognormal parameters as output, which forms the basis for the computation of novel and significant features. This paper presents a machine learning approach applied to handwriting features extracted through the sigma-lognormal model. The aim is to develop a support system to help doctors in the diagnosis and study of Alzheimer, evaluate the effectiveness of the extracted features and finally study the relation among them.
Abstract:Using kinematic properties of handwriting to support the diagnosis of neurodegenerative disease is a real challenge: non-invasive detection techniques combined with machine learning approaches promise big steps forward in this research field. In literature, the tasks proposed focused on different cognitive skills to elicitate handwriting movements. In particular, the meaning and phonology of words to copy can compromise writing fluency. In this paper, we investigated how word semantics and phonology affect the handwriting of people affected by Alzheimer's disease. To this aim, we used the data from six handwriting tasks, each requiring copying a word belonging to one of the following categories: regular (have a predictable phoneme-grapheme correspondence, e.g., cat), non-regular (have atypical phoneme-grapheme correspondence, e.g., laugh), and non-word (non-meaningful pronounceable letter strings that conform to phoneme-grapheme conversion rules). We analyzed the data using a machine learning approach by implementing four well-known and widely-used classifiers and feature selection. The experimental results showed that the feature selection allowed us to derive a different set of highly distinctive features for each word type. Furthermore, non-regular words needed, on average, more features but achieved excellent classification performance: the best result was obtained on a non-regular, reaching an accuracy close to 90%.