Abstract:We present a novel computational model employing hierarchical active inference to simulate reading and eye movements. The model characterizes linguistic processing as inference over a hierarchical generative model, facilitating predictions and inferences at various levels of granularity, from syllables to sentences. Our approach combines the strengths of large language models for realistic textual predictions and active inference for guiding eye movements to informative textual information, enabling the testing of predictions. The model exhibits proficiency in reading both known and unknown words and sentences, adhering to the distinction between lexical and nonlexical routes in dual-route theories of reading. Notably, our model permits the exploration of maladaptive inference effects on eye movements during reading, such as in dyslexia. To simulate this condition, we attenuate the contribution of priors during the reading process, leading to incorrect inferences and a more fragmented reading style, characterized by a greater number of shorter saccades. This alignment with empirical findings regarding eye movements in dyslexic individuals highlights the model's potential to aid in understanding the cognitive processes underlying reading and eye movements, as well as how reading deficits associated with dyslexia may emerge from maladaptive predictive processing. In summary, our model represents a significant advancement in comprehending the intricate cognitive processes involved in reading and eye movements, with potential implications for understanding and addressing dyslexia through the simulation of maladaptive inference. It may offer valuable insights into this condition and contribute to the development of more effective interventions for treatment.
Abstract:We advance a novel computational model of multi-agent, cooperative joint actions that is grounded in the cognitive framework of active inference. The model assumes that to solve a joint task, such as pressing together a red or blue button, two (or more) agents engage in a process of interactive inference. Each agent maintains probabilistic beliefs about the goal of the joint task (e.g., should we press the red or blue button?) and updates them by observing the other agent's movements, while in turn selecting movements that make his own intentions legible and easy to infer by the other agent (i.e., sensorimotor communication). Over time, the interactive inference aligns both the beliefs and the behavioral strategies of the agents, hence ensuring the success of the joint action. We exemplify the functioning of the model in two simulations. The first simulation illustrates a ''leaderless'' joint action. It shows that when two agents lack a strong preference about their joint task goal, they jointly infer it by observing each other's movements. In turn, this helps the interactive alignment of their beliefs and behavioral strategies. The second simulation illustrates a "leader-follower" joint action. It shows that when one agent ("leader") knows the true joint goal, it uses sensorimotor communication to help the other agent ("follower") infer it, even if doing this requires selecting a more costly individual plan. These simulations illustrate that interactive inference supports successful multi-agent joint actions and reproduces key cognitive and behavioral dynamics of "leaderless" and "leader-follower" joint actions observed in human-human experiments. In sum, interactive inference provides a cognitively inspired, formal framework to realize cooperative joint actions and consensus in multi-agent systems.
Abstract:In the literature, there is a strong interest to identify and define activation functions which can improve neural network performance. In recent years there is a renovated interest of the scientific community in investigating activation functions which can be trained during the learning process, usually referred as trainable, learnable or adaptable activation functions. They appear to lead to better network performance. Diverse and heterogeneous models of trainable activation function have been proposed in the literature. In this paper, we present a survey of these models. Starting from a discussion on the use of the term "activation function" in literature, we propose a taxonomy of trainable activation functions, highlight common and distinctive proprieties of recent and past models, and discuss on main advantages and limitations of this type of approach. We show that many of the proposed approaches are equivalent to add neuron layers which use fixed activation functions (nontrainable activation functions) and some simple local rule constrains the corresponding weight layers.