Abstract:State-of-the-art cross-encoders can be fine-tuned to be highly effective in passage re-ranking. The typical fine-tuning process of cross-encoders as re-rankers requires large amounts of manually labelled data, a contrastive learning objective, and a set of heuristically sampled negatives. An alternative recent approach for fine-tuning instead involves teaching the model to mimic the rankings of a highly effective large language model using a distillation objective. These fine-tuning strategies can be applied either individually, or in sequence. In this work, we systematically investigate the effectiveness of point-wise cross-encoders when fine-tuned independently in a single stage, or sequentially in two stages. Our experiments show that the effectiveness of point-wise cross-encoders fine-tuned using contrastive learning is indeed on par with that of models fine-tuned with multi-stage approaches. Code is available for reproduction at https://github.com/fpezzuti/multistage-finetuning.
Abstract:In the era of dense retrieval, document indexing and retrieval is largely based on encoding models that transform text documents into embeddings. The efficiency of retrieval is directly proportional to the number of documents and the size of the embeddings. Recent studies have shown that it is possible to reduce embedding size without sacrificing - and in some cases improving - the retrieval effectiveness. However, the methods introduced by these studies are query-dependent, so they can't be applied offline and require additional computations during query processing, thus negatively impacting the retrieval efficiency. In this paper, we present a novel static pruning method for reducing the dimensionality of embeddings using Principal Components Analysis. This approach is query-independent and can be executed offline, leading to a significant boost in dense retrieval efficiency with a negligible impact on the system effectiveness. Our experiments show that our proposed method reduces the dimensionality of document representations by over 50% with up to a 5% reduction in NDCG@10, for different dense retrieval models.