Abstract:Decoding inner speech from the brain signal via hybridisation of fMRI and EEG data is explored to investigate the performance benefits over unimodal models. Two different bimodal fusion approaches are examined: concatenation of probability vectors output from unimodal fMRI and EEG machine learning models, and data fusion with feature engineering. Same task inner speech data are recorded from four participants, and different processing strategies are compared and contrasted to previously-employed hybridisation methods. Data across participants are discovered to encode different underlying structures, which results in varying decoding performances between subject-dependent fusion models. Decoding performance is demonstrated as improved when pursuing bimodal fMRI-EEG fusion strategies, if the data show underlying structure.
Abstract:We propose a Historical Document Reading Challenge on Large Chinese Structured Family Records, in short ICDAR2019 HDRC CHINESE. The objective of the proposed competition is to recognize and analyze the layout, and finally detect and recognize the textlines and characters of the large historical document collection containing more than 20 000 pages kindly provided by FamilySearch.