Abstract:In this study, we tackle the challenge of identifying plant species from ultra high resolution (UHR) remote sensing images. Our approach involves introducing an RGB remote sensing dataset, characterized by millimeter-level spatial resolution, meticulously curated through several field expeditions across a mountainous region in France covering various landscapes. The task of plant species identification is framed as a semantic segmentation problem for its practical and efficient implementation across vast geographical areas. However, when dealing with segmentation masks, we confront instances where distinguishing boundaries between plant species and their background is challenging. We tackle this issue by introducing a fuzzy loss within the segmentation model. Instead of utilizing one-hot encoded ground truth (GT), our model incorporates Gaussian filter refined GT, introducing stochasticity during training. First experimental results obtained on both our UHR dataset and a public dataset are presented, showing the relevance of the proposed methodology, as well as the need for future improvement.
Abstract:Despite the popularity of deep neural networks in various domains, the extraction of digital terrain models (DTMs) from airborne laser scanning (ALS) point clouds is still challenging. This might be due to the lack of dedicated large-scale annotated dataset and the data-structure discrepancy between point clouds and DTMs. To promote data-driven DTM extraction, this paper collects from open sources a large-scale dataset of ALS point clouds and corresponding DTMs with various urban, forested, and mountainous scenes. A baseline method is proposed as the first attempt to train a Deep neural network to extract digital Terrain models directly from ALS point clouds via Rasterization techniques, coined DeepTerRa. Extensive studies with well-established methods are performed to benchmark the dataset and analyze the challenges in learning to extract DTM from point clouds. The experimental results show the interest of the agnostic data-driven approach, with sub-metric error level compared to methods designed for DTM extraction. The data and source code is provided at https://lhoangan.github.io/deepterra/ for reproducibility and further similar research.