Abstract:We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites. REAL comprises high-fidelity, deterministic replicas of 11 widely-used websites across domains such as e-commerce, travel, communication, and professional networking. We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions requiring both accurate information retrieval and state-changing actions. All interactions occur within this fully controlled setting, eliminating safety risks and enabling robust, reproducible evaluation of agent capability and reliability. Our novel evaluation framework combines programmatic checks of website state for action-based tasks with rubric-guided LLM-based judgments for information retrieval. The framework supports both open-source and proprietary agent systems through a flexible evaluation harness that accommodates black-box commands within browser environments, allowing research labs to test agentic systems without modification. Our empirical results show that frontier language models achieve at most a 41% success rate on REAL, highlighting critical gaps in autonomous web navigation and task completion capabilities. Our framework supports easy integration of new tasks, reproducible evaluation, and scalable data generation for training web agents. The websites, framework, and leaderboard are available at https://realevals.xyz and https://github.com/agi-inc/REAL.
Abstract:Recent research has shown that alignment between the structure of graph data and the geometry of an embedding space is crucial for learning high-quality representations of the data. The uniform geometry of Euclidean and hyperbolic spaces allows for representing graphs with uniform geometric and topological features, such as grids and hierarchies, with minimal distortion. However, real-world graph data is characterized by multiple types of geometric and topological features, necessitating more sophisticated geometric embedding spaces. In this work, we utilize the Riemannian symmetric space of symmetric positive definite matrices (SPD) to construct graph neural networks that can robustly handle complex graphs. To do this, we develop an innovative library that leverages the SPD gyrocalculus tools \cite{lopez2021gyroSPD} to implement the building blocks of five popular graph neural networks in SPD. Experimental results demonstrate that our graph neural networks in SPD substantially outperform their counterparts in Euclidean and hyperbolic spaces, as well as the Cartesian product thereof, on complex graphs for node and graph classification tasks. We release the library and datasets at \url{https://github.com/andyweizhao/SPD4GNNs}.