Abstract:Theoretical results from discrete geometry suggest that normed spaces can abstractly embed finite metric spaces with surprisingly low theoretical bounds on distortion in low dimensions. In this paper, inspired by this theoretical insight, we highlight normed spaces as a more flexible and computationally efficient alternative to several popular Riemannian manifolds for learning graph embeddings. Normed space embeddings significantly outperform several popular manifolds on a large range of synthetic and real-world graph reconstruction benchmark datasets while requiring significantly fewer computational resources. We also empirically verify the superiority of normed space embeddings on growing families of graphs associated with negative, zero, and positive curvature, further reinforcing the flexibility of normed spaces in capturing diverse graph structures as graph sizes increase. Lastly, we demonstrate the utility of normed space embeddings on two applied graph embedding tasks, namely, link prediction and recommender systems. Our work highlights the potential of normed spaces for geometric graph representation learning, raises new research questions, and offers a valuable tool for experimental mathematics in the field of finite metric space embeddings. We make our code and data publically available.
Abstract:Recent research has shown that alignment between the structure of graph data and the geometry of an embedding space is crucial for learning high-quality representations of the data. The uniform geometry of Euclidean and hyperbolic spaces allows for representing graphs with uniform geometric and topological features, such as grids and hierarchies, with minimal distortion. However, real-world graph data is characterized by multiple types of geometric and topological features, necessitating more sophisticated geometric embedding spaces. In this work, we utilize the Riemannian symmetric space of symmetric positive definite matrices (SPD) to construct graph neural networks that can robustly handle complex graphs. To do this, we develop an innovative library that leverages the SPD gyrocalculus tools \cite{lopez2021gyroSPD} to implement the building blocks of five popular graph neural networks in SPD. Experimental results demonstrate that our graph neural networks in SPD substantially outperform their counterparts in Euclidean and hyperbolic spaces, as well as the Cartesian product thereof, on complex graphs for node and graph classification tasks. We release the library and datasets at \url{https://github.com/andyweizhao/SPD4GNNs}.