Abstract:With the significant progress of speech technologies, spoken goal-oriented dialogue systems are becoming increasingly popular. One of the main modules of a dialogue system is typically the dialogue policy, which is responsible for determining system actions. This component usually relies only on audio transcriptions, being strongly dependent on their quality and ignoring very important extralinguistic information embedded in the user's speech. In this paper, we propose new architectures to add audio information by combining speech and text embeddings using a Double Multi-Head Attention component. Our experiments show that audio embedding-aware dialogue policies outperform text-based ones, particularly in noisy transcription scenarios, and that how text and audio embeddings are combined is crucial to improve performance. We obtained a 9.8% relative improvement in the User Request Score compared to an only-text-based dialogue system on the DSTC2 dataset.
Abstract:The domain of speech emotion recognition (SER) has persistently been a frontier within the landscape of machine learning. It is an active field that has been revolutionized in the last few decades and whose implementations are remarkable in multiple applications that could affect daily life. Consequently, the Iberian Languages Evaluation Forum (IberLEF) of 2024 held a competitive challenge to leverage the SER results with a Spanish corpus. This paper presents the approach followed with the goal of participating in this competition. The main architecture consists of different pre-trained speech and text models to extract features from both modalities, utilizing an attention pooling mechanism. The proposed system has achieved the first position in the challenge with an 86.69% in Macro F1-Score.
Abstract:As computer-based applications are becoming more integrated into our daily lives, the importance of Speech Emotion Recognition (SER) has increased significantly. Promoting research with innovative approaches in SER, the Odyssey 2024 Speech Emotion Recognition Challenge was organized as part of the Odyssey 2024 Speaker and Language Recognition Workshop. In this paper we describe the Double Multi-Head Attention Multimodal System developed for this challenge. Pre-trained self-supervised models were used to extract informative acoustic and text features. An early fusion strategy was adopted, where a Multi-Head Attention layer transforms these mixed features into complementary contextualized representations. A second attention mechanism is then applied to pool these representations into an utterance-level vector. Our proposed system achieved the third position in the categorical task ranking with a 34.41% Macro-F1 score, where 31 teams participated in total.
Abstract:State-of-the-art Deep Learning systems for speaker verification are commonly based on speaker embedding extractors. These architectures are usually composed of a feature extractor front-end together with a pooling layer to encode variable-length utterances into fixed-length speaker vectors. The authors have recently proposed the use of a Double Multi-Head Self-Attention pooling for speaker recognition, placed between a CNN-based front-end and a set of fully connected layers. This has shown to be an excellent approach to efficiently select the most relevant features captured by the front-end from the speech signal. In this paper we show excellent experimental results by adapting this architecture to other different speaker characterization tasks, such as emotion recognition, sex classification and COVID-19 detection.