The domain of speech emotion recognition (SER) has persistently been a frontier within the landscape of machine learning. It is an active field that has been revolutionized in the last few decades and whose implementations are remarkable in multiple applications that could affect daily life. Consequently, the Iberian Languages Evaluation Forum (IberLEF) of 2024 held a competitive challenge to leverage the SER results with a Spanish corpus. This paper presents the approach followed with the goal of participating in this competition. The main architecture consists of different pre-trained speech and text models to extract features from both modalities, utilizing an attention pooling mechanism. The proposed system has achieved the first position in the challenge with an 86.69% in Macro F1-Score.