Abstract:The rise of synoptic sky surveys has ushered in an era of big data in time-domain astronomy, making data science and machine learning essential tools for studying celestial objects. Tree-based (e.g. Random Forests) and deep learning models represent the current standard in the field. We explore the use of different distance metrics to aid in the classification of objects. For this, we developed a new distance metric based classifier called DistClassiPy. The direct use of distance metrics is an approach that has not been explored in time-domain astronomy, but distance-based methods can aid in increasing the interpretability of the classification result and decrease the computational costs. In particular, we classify light curves of variable stars by comparing the distances between objects of different classes. Using 18 distance metrics applied to a catalog of 6,000 variable stars in 10 classes, we demonstrate classification and dimensionality reduction. We show that this classifier meets state-of-the-art performance but has lower computational requirements and improved interpretability. We have made DistClassiPy open-source and accessible at https://pypi.org/project/distclassipy/ with the goal of broadening its applications to other classification scenarios within and beyond astronomy.
Abstract:This report provides an overview of recent work that harnesses the Big Data Revolution and Large Scale Computing to address grand computational challenges in Multi-Messenger Astrophysics, with a particular emphasis on real-time discovery campaigns. Acknowledging the transdisciplinary nature of Multi-Messenger Astrophysics, this document has been prepared by members of the physics, astronomy, computer science, data science, software and cyberinfrastructure communities who attended the NSF-, DOE- and NVIDIA-funded "Deep Learning for Multi-Messenger Astrophysics: Real-time Discovery at Scale" workshop, hosted at the National Center for Supercomputing Applications, October 17-19, 2018. Highlights of this report include unanimous agreement that it is critical to accelerate the development and deployment of novel, signal-processing algorithms that use the synergy between artificial intelligence (AI) and high performance computing to maximize the potential for scientific discovery with Multi-Messenger Astrophysics. We discuss key aspects to realize this endeavor, namely (i) the design and exploitation of scalable and computationally efficient AI algorithms for Multi-Messenger Astrophysics; (ii) cyberinfrastructure requirements to numerically simulate astrophysical sources, and to process and interpret Multi-Messenger Astrophysics data; (iii) management of gravitational wave detections and triggers to enable electromagnetic and astro-particle follow-ups; (iv) a vision to harness future developments of machine and deep learning and cyberinfrastructure resources to cope with the scale of discovery in the Big Data Era; (v) and the need to build a community that brings domain experts together with data scientists on equal footing to maximize and accelerate discovery in the nascent field of Multi-Messenger Astrophysics.