Abstract:Mixup generates augmented samples by linearly interpolating inputs and labels with a controllable ratio. However, since it operates in the latent embedding level, the resulting samples are not human-interpretable. In contrast, LLM-based augmentation methods produce sentences via prompts at the token level, yielding readable outputs but offering limited control over the generation process. Inspired by recent advances in LLM inversion, which reconstructs natural language from embeddings and helps bridge the gap between latent embedding space and discrete token space, we propose inversedMixup, a unified framework that combines the controllability of Mixup with the interpretability of LLM-based generation. Specifically, inversedMixup adopts a three-stage training procedure to align the output embedding space of a task-specific model with the input embedding space of an LLM. Upon successful alignment, inversedMixup can reconstruct mixed embeddings with a controllable mixing ratio into human-interpretable augmented sentences, thereby improving the augmentation performance. Additionally, inversedMixup provides the first empirical evidence of the manifold intrusion phenomenon in text Mixup and introduces a simple yet effective strategy to mitigate it. Extensive experiments demonstrate the effectiveness and generalizability of our approach in both few-shot and fully supervised scenarios.
Abstract:Existing long-text generation methods primarily concentrate on producing lengthy texts from short inputs, neglecting the long-input and long-output tasks. Such tasks have numerous practical applications while lacking available benchmarks. Moreover, as the input grows in length, existing methods inevitably encounter the "lost-in-the-middle" phenomenon. In this paper, we first introduce a Long Input and Output Benchmark (LongInOutBench), including a synthetic dataset and a comprehensive evaluation framework, addressing the challenge of the missing benchmark. We then develop the Retrieval-Augmented Long-Text Writer (RAL-Writer), which retrieves and restates important yet overlooked content, mitigating the "lost-in-the-middle" issue by constructing explicit prompts. We finally employ the proposed LongInOutBench to evaluate our RAL-Writer against comparable baselines, and the results demonstrate the effectiveness of our approach. Our code has been released at https://github.com/OnlyAR/RAL-Writer.
Abstract:Hierarchical text classification (HTC) aims to assign one or more labels in the hierarchy for each text. Many methods represent this structure as a global hierarchy, leading to redundant graph structures. To address this, incorporating a text-specific local hierarchy is essential. However, existing approaches often model this local hierarchy as a sequence, focusing on explicit parent-child relationships while ignoring implicit correlations among sibling/peer relationships. In this paper, we first integrate local hierarchies into a manual depth-level prompt to capture parent-child relationships. We then apply Mixup to this hierarchical prompt tuning scheme to improve the latent correlation within sibling/peer relationships. Notably, we propose a novel Mixup ratio guided by local hierarchy correlation to effectively capture intrinsic correlations. This Local Hierarchy Mixup (LH-Mix) model demonstrates remarkable performance across three widely-used datasets.




Abstract:Model merging combines multiple fine-tuned models into a single one via parameter fusion, achieving improvements across many tasks. However, in the classification task, we find a misalignment issue between merging outputs and the fine-tuned classifier, which limits its effectiveness. In this paper, we demonstrate the following observations: (1) The embedding quality of the merging outputs is already very high, and the primary reason for the differences in classification performance lies in the misalignment issue. (2) We propose FT-Classifier, a new protocol that fine-tunes an aligned classifier with few-shot samples to alleviate misalignment, enabling better evaluation of merging outputs and improved classification performance. (3) The misalignment is relatively straightforward and can be formulated as an orthogonal transformation. Experiments demonstrate the existence of misalignment and the effectiveness of our FT-Classifier evaluation protocol.
Abstract:Model merging combines multiple homologous models into one model, achieving convincing generalization without the necessity of additional training. A key challenge in this problem is resolving parameter redundancies and conflicts across multiple models. Existing models have demonstrated that dropping a portion of delta parameters can alleviate conflicts while maintaining performance. However, these methods often drop parameters either randomly or based on magnitude, overlooking task-specific information embedded in fine-tuned models. In this paper, we propose an Activated Parameter Locating (APL) method that utilizes causal intervention to estimate parameter importance, enabling more precise parameter drops and better conflict mitigation. Moreover, to reduce the computational complexity associated with a large number of parameter partitions, we also introduce a theoretically supported gradient approximation strategy for APL. Experiments on model merging within both in-domain and out-of-domain settings, along with associated analyses, showcase the effectiveness of APL.