Abstract:As a modern ensemble technique, Deep Forest (DF) employs a cascading structure to construct deep models, providing stronger representational power compared to traditional decision forests. However, its greedy multi-layer learning procedure is prone to overfitting, limiting model effectiveness and generalizability. This paper presents an optimized Deep Forest, featuring learnable, layerwise data augmentation policy schedules. Specifically, We introduce the Cut Mix for Tabular data (CMT) augmentation technique to mitigate overfitting and develop a population-based search algorithm to tailor augmentation intensity for each layer. Additionally, we propose to incorporate outputs from intermediate layers into a checkpoint ensemble for more stable performance. Experimental results show that our method sets new state-of-the-art (SOTA) benchmarks in various tabular classification tasks, outperforming shallow tree ensembles, deep forests, deep neural network, and AutoML competitors. The learned policies also transfer effectively to Deep Forest variants, underscoring its potential for enhancing non-differentiable deep learning modules in tabular signal processing.
Abstract:The wide application of deep learning techniques is boosting the regulation of deep learning models, especially deep neural networks (DNN), as commercial products. A necessary prerequisite for such regulations is identifying the owner of deep neural networks, which is usually done through the watermark. Current DNN watermarking schemes, particularly white-box ones, are uniformly fragile against a family of functionality equivalence attacks, especially the neuron permutation. This operation can effortlessly invalidate the ownership proof and escape copyright regulations. To enhance the robustness of white-box DNN watermarking schemes, this paper presents a procedure that aligns neurons into the same order as when the watermark is embedded, so the watermark can be correctly recognized. This neuron alignment process significantly facilitates the functionality of established deep neural network watermarking schemes.
Abstract:The combination of a CNN detector and a search framework forms the basis for local object/pattern detection. To handle the waste of regional information and the defective compromise between efficiency and accuracy, this paper proposes a probabilistic model with a powerful search framework. By mapping an image into a probabilistic distribution of objects, this new model gives more informative outputs with less computation. The setting and analytic traits are elaborated in this paper, followed by a series of experiments carried out on FDDB, which show that the proposed model is sound, efficient and analytic.