Abstract:It is one of the most challenging issues in applied mathematics to approximately solve high-dimensional partial differential equations (PDEs) and most of the numerical approximation methods for PDEs in the scientific literature suffer from the so-called curse of dimensionality in the sense that the number of computational operations employed in the corresponding approximation scheme to obtain an approximation precision $\varepsilon>0$ grows exponentially in the PDE dimension and/or the reciprocal of $\varepsilon$. Recently, certain deep learning based approximation methods for PDEs have been proposed and various numerical simulations for such methods suggest that deep neural network (DNN) approximations might have the capacity to indeed overcome the curse of dimensionality in the sense that the number of real parameters used to describe the approximating DNNs grows at most polynomially in both the PDE dimension $d\in\mathbb{N}$ and the reciprocal of the prescribed accuracy $\varepsilon>0$. There are now also a few rigorous results in the scientific literature which substantiate this conjecture by proving that DNNs overcome the curse of dimensionality in approximating solutions of PDEs. Each of these results establishes that DNNs overcome the curse of dimensionality in approximating suitable PDE solutions at a fixed time point $T>0$ and on a compact cube $[a,b]^d$ in space but none of these results provides an answer to the question whether the entire PDE solution on $[0,T]\times [a,b]^d$ can be approximated by DNNs without the curse of dimensionality. It is precisely the subject of this article to overcome this issue. More specifically, the main result of this work in particular proves for every $a\in\mathbb{R}$, $ b\in (a,\infty)$ that solutions of certain Kolmogorov PDEs can be approximated by DNNs on the space-time region $[0,T]\times [a,b]^d$ without the curse of dimensionality.
Abstract:Over the last few years deep artificial neural networks (DNNs) have very successfully been used in numerical simulations for a wide variety of computational problems including computer vision, image classification, speech recognition, natural language processing, as well as computational advertisement. In addition, it has recently been proposed to approximate solutions of partial differential equations (PDEs) by means of stochastic learning problems involving DNNs. There are now also a few rigorous mathematical results in the scientific literature which provide error estimates for such deep learning based approximation methods for PDEs. All of these articles provide spatial error estimates for neural network approximations for PDEs but do not provide error estimates for the entire space-time error for the considered neural network approximations. It is the subject of the main result of this article to provide space-time error estimates for DNN approximations of Euler approximations of certain perturbed differential equations. Our proof of this result is based (i) on a certain artificial neural network (ANN) calculus and (ii) on ANN approximation results for products of the form $[0,T]\times \mathbb{R}^d\ni (t,x)\mapsto tx\in \mathbb{R}^d$ where $T\in (0,\infty)$, $d\in \mathbb{N}$, which we both develop within this article.
Abstract:Artificial neural networks (ANNs) have very successfully been used in numerical simulations for a series of computational problems ranging from image classification/image recognition, speech recognition, time series analysis, game intelligence, and computational advertising to numerical approximations of partial differential equations (PDEs). Such numerical simulations suggest that ANNs have the capacity to very efficiently approximate high-dimensional functions and, especially, such numerical simulations indicate that ANNs seem to admit the fundamental power to overcome the curse of dimensionality when approximating the high-dimensional functions appearing in the above named computational problems. There are also a series of rigorous mathematical approximation results for ANNs in the scientific literature. Some of these mathematical results prove convergence without convergence rates and some of these mathematical results even rigorously establish convergence rates but there are only a few special cases where mathematical results can rigorously explain the empirical success of ANNs when approximating high-dimensional functions. The key contribution of this article is to disclose that ANNs can efficiently approximate high-dimensional functions in the case of numerical approximations of Black-Scholes PDEs. More precisely, this work reveals that the number of required parameters of an ANN to approximate the solution of the Black-Scholes PDE grows at most polynomially in both the reciprocal of the prescribed approximation accuracy $\varepsilon > 0$ and the PDE dimension $d \in \mathbb{N}$ and we thereby prove, for the first time, that ANNs do indeed overcome the curse of dimensionality in the numerical approximation of Black-Scholes PDEs.