Abstract:Deep learning transformers have drastically improved systems that automatically answer questions in natural language. However, different questions demand different answering techniques; here we propose, build and validate an architecture that integrates different modules to answer two distinct kinds of queries. Our architecture takes a free-form natural language text and classifies it to send it either to a Neural Question Answering Reasoner or a Natural Language parser to SQL. We implemented a complete system for the Portuguese language, using some of the main tools available for the language and translating training and testing datasets. Experiments show that our system selects the appropriate answering method with high accuracy (over 99\%), thus validating a modular question answering strategy.
Abstract:The challenge of climate change and biome conservation is one of the most pressing issues of our time - particularly in Brazil, where key environmental reserves are located. Given the availability of large textual databases on ecological themes, it is natural to resort to question answering (QA) systems to increase social awareness and understanding about these topics. In this work, we introduce multiple QA systems that combine in novel ways the BM25 algorithm, a sparse retrieval technique, with PTT5, a pre-trained state-of-the-art language model. Our QA systems focus on the Portuguese language, thus offering resources not found elsewhere in the literature. As training data, we collected questions from open-domain datasets, as well as content from the Portuguese Wikipedia and news from the press. We thus contribute with innovative architectures and novel applications, attaining an F1-score of 36.2 with our best model.