Abstract:We consider the problem of supervised classification, such that the features that the network extracts match an unseen set of semantic attributes, without any additional supervision. For example, when learning to classify images of birds into species, we would like to observe the emergence of features that zoologists use to classify birds. We propose training a neural network with discrete top-level activations, which is followed by a multi-layered perceptron (MLP) and a parallel decision tree. We present a theoretical analysis as well as a practical method for learning in the intersection of two hypothesis classes. Since real-world features are often sparse, a randomized sparsity regularization is also applied. Our results on multiple benchmarks show an improved ability to extract a set of features that are highly correlated with the set of unseen attributes.