Abstract:As machine learning models become increasingly complex, concerns about their robustness and trustworthiness have become more pressing. A critical vulnerability of these models is data poisoning attacks, where adversaries deliberately alter training data to degrade model performance. One particularly stealthy form of these attacks is subpopulation poisoning, which targets distinct subgroups within a dataset while leaving overall performance largely intact. The ability of these attacks to generalize within subpopulations poses a significant risk in real-world settings, as they can be exploited to harm marginalized or underrepresented groups within the dataset. In this work, we investigate how model complexity influences susceptibility to subpopulation poisoning attacks. We introduce a theoretical framework that explains how overparameterized models, due to their large capacity, can inadvertently memorize and misclassify targeted subpopulations. To validate our theory, we conduct extensive experiments on large-scale image and text datasets using popular model architectures. Our results show a clear trend: models with more parameters are significantly more vulnerable to subpopulation poisoning. Moreover, we find that attacks on smaller, human-interpretable subgroups often go undetected by these models. These results highlight the need to develop defenses that specifically address subpopulation vulnerabilities.
Abstract:Machine learning is susceptible to poisoning attacks, in which an attacker controls a small fraction of the training data and chooses that data with the goal of inducing some behavior unintended by the model developer in the trained model. We consider a realistic setting in which the adversary with the ability to insert a limited number of data points attempts to control the model's behavior on a specific subpopulation. Inspired by previous observations on disparate effectiveness of random label-flipping attacks on different subpopulations, we investigate the properties that can impact the effectiveness of state-of-the-art poisoning attacks against different subpopulations. For a family of 2-dimensional synthetic datasets, we empirically find that dataset separability plays a dominant role in subpopulation vulnerability for less separable datasets. However, well-separated datasets exhibit more dependence on individual subpopulation properties. We further discover that a crucial subpopulation property is captured by the difference in loss on the clean dataset between the clean model and a target model that misclassifies the subpopulation, and a subpopulation is much easier to attack if the loss difference is small. This property also generalizes to high-dimensional benchmark datasets. For the Adult benchmark dataset, we show that we can find semantically-meaningful subpopulation properties that are related to the susceptibilities of a selected group of subpopulations. The results in this paper are accompanied by a fully interactive web-based visualization of subpopulation poisoning attacks found at https://uvasrg.github.io/visualizing-poisoning