Abstract:The rise of multimodal large language models has introduced innovative human-machine interaction paradigms but also significant challenges in machine learning safety. Audio-Language Models (ALMs) are especially relevant due to the intuitive nature of spoken communication, yet little is known about their failure modes. This paper explores audio jailbreaks targeting ALMs, focusing on their ability to bypass alignment mechanisms. We construct adversarial perturbations that generalize across prompts, tasks, and even base audio samples, demonstrating the first universal jailbreaks in the audio modality, and show that these remain effective in simulated real-world conditions. Beyond demonstrating attack feasibility, we analyze how ALMs interpret these audio adversarial examples and reveal them to encode imperceptible first-person toxic speech - suggesting that the most effective perturbations for eliciting toxic outputs specifically embed linguistic features within the audio signal. These results have important implications for understanding the interactions between different modalities in multimodal models, and offer actionable insights for enhancing defenses against adversarial audio attacks.
Abstract:As machine learning models become increasingly complex, concerns about their robustness and trustworthiness have become more pressing. A critical vulnerability of these models is data poisoning attacks, where adversaries deliberately alter training data to degrade model performance. One particularly stealthy form of these attacks is subpopulation poisoning, which targets distinct subgroups within a dataset while leaving overall performance largely intact. The ability of these attacks to generalize within subpopulations poses a significant risk in real-world settings, as they can be exploited to harm marginalized or underrepresented groups within the dataset. In this work, we investigate how model complexity influences susceptibility to subpopulation poisoning attacks. We introduce a theoretical framework that explains how overparameterized models, due to their large capacity, can inadvertently memorize and misclassify targeted subpopulations. To validate our theory, we conduct extensive experiments on large-scale image and text datasets using popular model architectures. Our results show a clear trend: models with more parameters are significantly more vulnerable to subpopulation poisoning. Moreover, we find that attacks on smaller, human-interpretable subgroups often go undetected by these models. These results highlight the need to develop defenses that specifically address subpopulation vulnerabilities.