Abstract:This paper presents a novel approach for robust 3D tracking of multiple birds in an outdoor aviary using a multi-camera system. Our method addresses the challenges of visually similar birds and their rapid movements by leveraging environmental landmarks for enhanced feature matching and 3D reconstruction. In our approach, outliers are rejected based on their nearest landmark. This enables precise 3D-modeling and simultaneous tracking of multiple birds. By utilizing environmental context, our approach significantly improves the differentiation between visually similar birds, a key obstacle in existing tracking systems. Experimental results demonstrate the effectiveness of our method, showing a $20\%$ elimination of outliers in the 3D reconstruction process, with a $97\%$ accuracy in matching. This remarkable accuracy in 3D modeling translates to robust and reliable tracking of multiple birds, even in challenging outdoor conditions. Our work not only advances the field of computer vision but also provides a valuable tool for studying bird behavior and movement patterns in natural settings. We also provide a large annotated dataset of 80 birds residing in four enclosures for 20 hours of footage which provides a rich testbed for researchers in computer vision, ornithologists, and ecologists. Code and the link to the dataset is available at https://github.com/airou-lab/3D_Multi_Bird_Tracking
Abstract:This paper presents a 1/10th scale mini-city platform used as a testing bed for evaluating autonomous and connected vehicles. Using the mini-city platform, we can evaluate different driving scenarios including human-driven and autonomous driving. We provide a unique, visual feature-rich environment for evaluating computer vision methods. The conducted experiments utilize onboard sensors mounted on a robotic platform we built, allowing them to navigate in a controlled real-world urban environment. The designed city is occupied by cars, stop signs, a variety of residential and business buildings, and complex intersections mimicking an urban area. Furthermore, We have designed an intelligent infrastructure at one of the intersections in the city which helps safer and more efficient navigation in the presence of multiple cars and pedestrians. We have used the mini-city platform for the analysis of three different applications: city mapping, depth estimation in challenging occluded environments, and smart infrastructure for connected vehicles. Our smart infrastructure is among the first to develop and evaluate Vehicle-to-Infrastructure (V2I) communication at intersections. The intersection-related result shows how inaccuracy in perception, including mapping and localization, can affect safety. The proposed mini-city platform can be considered as a baseline environment for developing research and education in intelligent transportation systems.