Abstract:Despite major advancements in control design that are robust to unplanned disturbances, bipedal robots are still susceptible to falling over and struggle to negotiate rough terrains. By utilizing thrusters in our bipedal robot, we can perform additional posture manipulation and expand the modes of locomotion to enhance the robot's stability and ability to negotiate rough and difficult-to-navigate terrains. In this paper, we present our efforts in designing a controller based on capture point control for our thruster-assisted walking model named Harpy and explore its control design possibilities. While capture point control based on centroidal models for bipedal systems has been extensively studied, the incorporation of external forces that can influence the dynamics of linear inverted pendulum models, often used in capture point-based works, has not been explored before. The inclusion of these external forces can lead to interesting interpretations of locomotion, such as virtual buoyancy studied in aquatic-legged locomotion. This paper outlines the dynamical model of our robot, the capture point method we use to assist the upper body stabilization, and the simulation work done to show the controller's feasibility.
Abstract:In this study, our aim is to evaluate the effectiveness of thruster-assisted steep slope walking for the Husky Carbon, a quadrupedal robot equipped with custom-designed actuators and plural electric ducted fans, through simulation prior to conducting experimental trials. Thruster-assisted steep slope walking draws inspiration from wing-assisted incline running (WAIR) observed in birds, and intriguingly incorporates posture manipulation and thrust vectoring, a locomotion technique not previously explored in the animal kingdom. Our approach involves developing a reduced-order model of the Husky robot, followed by the application of an optimization-based controller utilizing collocation methods and dynamics interpolation to determine control actions. Through simulation testing, we demonstrate the feasibility of hardware implementation of our controller.
Abstract:This paper employs a reinforcement learning-based model identification method aimed at enhancing the accuracy of the dynamics for our snake robot, called COBRA. Leveraging gradient information and iterative optimization, the proposed approach refines the parameters of COBRA's dynamical model such as coefficient of friction and actuator parameters using experimental and simulated data. Experimental validation on the hardware platform demonstrates the efficacy of the proposed approach, highlighting its potential to address sim-to-real gap in robot implementation.
Abstract:The primary aim of this study is to enhance the accuracy of our aerodynamic Fluid-Structure Interaction (FSI) model to support the controlled tracking of 3D flight trajectories by Aerobat, which is a dynamic morphing winged drone. Building upon our previously documented Unsteady Aerodynamic model rooted in horseshoe vortices, we introduce a new iteration of Aerobat, labeled as version beta, which is designed for attachment to a Kinova arm. Through a series of experiments, we gather force-moment data from the robotic arm attachment and utilize it to fine-tune our unsteady model for banking turn maneuvers. Subsequently, we employ the tuned FSI model alongside a collocation control strategy to accomplish 3D banking turns of Aerobat within simulation environments. The primary contribution lies in presenting a methodical approach to calibrate our FSI model to predict complex 3D maneuvers and successfully assessing the model's potential for closed-loop flight control of Aerobat using an optimization-based collocation method.
Abstract:The 3D flight control of a flapping wing robot is a very challenging problem. The robot stabilizes and controls its pose through the aerodynamic forces acting on the wing membrane which has complex dynamics and it is difficult to develop a control method to interact with such a complex system. Bats, in particular, are capable of performing highly agile aerial maneuvers such as tight banking and bounding flight solely using their highly flexible wings. In this work, we develop a control method for a bio-inspired bat robot, the Aerobat, using small low-powered actuators to manipulate the flapping gait and the resulting aerodynamic forces. We implemented a controller based on collocation approach to track a desired roll and perform a banking maneuver to be used in a trajectory tracking controller. This controller is implemented in a simulation to show its performance and feasibility.
Abstract:This research concentrates on enhancing the navigational capabilities of Northeastern Universitys Husky, a multi-modal quadrupedal robot, that can integrate posture manipulation and thrust vectoring, to traverse through narrow pathways such as walking over pipes and slacklining. The Husky is outfitted with thrusters designed to stabilize its body during dynamic walking over these narrow paths. The project involves modeling the robot using the HROM (Husky Reduced Order Model) and developing an optimal control framework. This framework is based on polynomial approximation of the HROM and a collocation approach to derive optimal thruster commands necessary for achieving dynamic walking on narrow paths. The effectiveness of the modeling and control design approach is validated through simulations conducted using Matlab.
Abstract:Passive tumbling uses natural forces like gravity for efficient travel. But without an active means of control, passive tumblers must rely entirely on external forces. Northeastern University's COBRA is a snake robot that can morph into a ring, which employs passive tumbling to traverse down slopes. However, due to its articulated joints, it is also capable of dynamically altering its posture to manipulate the dynamics of the tumbling locomotion for active steering. This paper presents a modelling and control strategy based on collocation optimization for real-time steering of COBRA's tumbling locomotion. We validate our approach using Matlab simulations.
Abstract:Object manipulation has been extensively studied in the context of fixed base and mobile manipulators. However, the overactuated locomotion modality employed by snake robots allows for a unique blend of object manipulation through locomotion, referred to as loco-manipulation. The following work presents an optimization approach to solving the loco-manipulation problem based on non-impulsive implicit contact path planning for our snake robot COBRA. We present the mathematical framework and show high-fidelity simulation results and experiments to demonstrate the effectiveness of our approach.
Abstract:Object manipulation has been extensively studied in the context of fixed base and mobile manipulators. However, the overactuated locomotion modality employed by snake robots allows for a unique blend of object manipulation through locomotion, referred to as loco-manipulation. The following work presents an optimization approach to solving the loco-manipulation problem based on non-impulsive implicit contact path planning for our snake robot COBRA. We present the mathematical framework and show high fidelity simulation results for fixed-shape lateral rolling trajectories that demonstrate the object manipulation.
Abstract:Inspired by Chukars wing-assisted incline running (WAIR), in this work, we employ a high-fidelity model of our Husky Carbon quadrupedal-legged robot to walk over steep slopes of up to 45 degrees. Chukars use the aerodynamic forces generated by their flapping wings to manipulate ground contact forces and traverse steep slopes and even overhangs. By exploiting the thrusters on Husky, we employed a collocation approach to rapidly resolving the joint and thruster actions. Our approach uses a polynomial approximation of the reduced-order dynamics of Husky, called HROM, to quickly and efficiently find optimal control actions that permit high-slope walking without violating friction cone conditions.