Abstract:Labeling errors in datasets are common, if not systematic, in practice. They naturally arise in a variety of contexts-human labeling, noisy labeling, and weak labeling (i.e., image classification), for example. This presents a persistent and pervasive stress on machine learning practice. In particular, neural network (NN) architectures can withstand minor amounts of dataset imperfection with traditional countermeasures such as regularization, data augmentation, and batch normalization. However, major dataset imperfections often prove insurmountable. We propose and study the implementation of Rockafellian Relaxation (RR), a new loss reweighting, architecture-independent methodology, for neural network training. Experiments indicate RR can enhance standard neural network methods to achieve robust performance across classification tasks in computer vision and natural language processing (sentiment analysis). We find that RR can mitigate the effects of dataset corruption due to both (heavy) labeling error and/or adversarial perturbation, demonstrating effectiveness across a variety of data domains and machine learning tasks.
Abstract:Transfer learning (TL) is an increasingly popular approach to training deep learning (DL) models that leverages the knowledge gained by training a foundation model on diverse, large-scale datasets for use on downstream tasks where less domain- or task-specific data is available. The literature is rich with TL techniques and applications; however, the bulk of the research makes use of deterministic DL models which are often uncalibrated and lack the ability to communicate a measure of epistemic (model) uncertainty in prediction. Unlike their deterministic counterparts, Bayesian DL (BDL) models are often well-calibrated, provide access to epistemic uncertainty for a prediction, and are capable of achieving competitive predictive performance. In this study, we propose variational inference pre-trained audio neural networks (VI-PANNs). VI-PANNs are a variational inference variant of the popular ResNet-54 architecture which are pre-trained on AudioSet, a large-scale audio event detection dataset. We evaluate the quality of the resulting uncertainty when transferring knowledge from VI-PANNs to other downstream acoustic classification tasks using the ESC-50, UrbanSound8K, and DCASE2013 datasets. We demonstrate, for the first time, that it is possible to transfer calibrated uncertainty information along with knowledge from upstream tasks to enhance a model's capability to perform downstream tasks.