Abstract:Federated learning (FL) is an approach to training machine learning models that takes advantage of multiple distributed datasets while maintaining data privacy and reducing communication costs associated with sharing local datasets. Aggregation strategies have been developed to pool or fuse the weights and biases of distributed deterministic models; however, modern deterministic deep learning (DL) models are often poorly calibrated and lack the ability to communicate a measure of epistemic uncertainty in prediction, which is desirable for remote sensing platforms and safety-critical applications. Conversely, Bayesian DL models are often well calibrated and capable of quantifying and communicating a measure of epistemic uncertainty along with a competitive prediction accuracy. Unfortunately, because the weights and biases in Bayesian DL models are defined by a probability distribution, simple application of the aggregation methods associated with FL schemes for deterministic models is either impossible or results in sub-optimal performance. In this work, we use independent and identically distributed (IID) and non-IID partitions of the CIFAR-10 dataset and a fully variational ResNet-20 architecture to analyze six different aggregation strategies for Bayesian DL models. Additionally, we analyze the traditional federated averaging approach applied to an approximate Bayesian Monte Carlo dropout model as a lightweight alternative to more complex variational inference methods in FL. We show that aggregation strategy is a key hyperparameter in the design of a Bayesian FL system with downstream effects on accuracy, calibration, uncertainty quantification, training stability, and client compute requirements.
Abstract:Transfer learning (TL) is an increasingly popular approach to training deep learning (DL) models that leverages the knowledge gained by training a foundation model on diverse, large-scale datasets for use on downstream tasks where less domain- or task-specific data is available. The literature is rich with TL techniques and applications; however, the bulk of the research makes use of deterministic DL models which are often uncalibrated and lack the ability to communicate a measure of epistemic (model) uncertainty in prediction. Unlike their deterministic counterparts, Bayesian DL (BDL) models are often well-calibrated, provide access to epistemic uncertainty for a prediction, and are capable of achieving competitive predictive performance. In this study, we propose variational inference pre-trained audio neural networks (VI-PANNs). VI-PANNs are a variational inference variant of the popular ResNet-54 architecture which are pre-trained on AudioSet, a large-scale audio event detection dataset. We evaluate the quality of the resulting uncertainty when transferring knowledge from VI-PANNs to other downstream acoustic classification tasks using the ESC-50, UrbanSound8K, and DCASE2013 datasets. We demonstrate, for the first time, that it is possible to transfer calibrated uncertainty information along with knowledge from upstream tasks to enhance a model's capability to perform downstream tasks.