Abstract:Semantic segmentation of high-resolution remote sensing images is vital in downstream applications such as land-cover mapping, urban planning and disaster assessment.Existing Transformer-based methods suffer from the constraint between accuracy and efficiency, while the recently proposed Mamba is renowned for being efficient. Therefore, to overcome the dilemma, we propose UNetMamba, a UNet-like semantic segmentation model based on Mamba. It incorporates a mamba segmentation decoder (MSD) that can efficiently decode the complex information within high-resolution images, and a local supervision module (LSM), which is train-only but can significantly enhance the perception of local contents. Extensive experiments demonstrate that UNetMamba outperforms the state-of-the-art methods with mIoU increased by 0.87% on LoveDA and 0.36% on ISPRS Vaihingen, while achieving high efficiency through the lightweight design, less memory footprint and reduced computational cost. The source code is available at https://github.com/EnzeZhu2001/UNetMamba.
Abstract:The semantic segmentation of high-resolution remote sensing images plays a crucial role in downstream applications such as urban planning and disaster assessment. However, existing Transformer-based methods suffer from the constraint between accuracy and efficiency. To overcome this dilemma, we propose UNetMamba, a novel Mamba-based semantic segmentation model. It incorporates a Mamba Segmentation Decoder (MSD) that can efficiently decode the complex information within high-resolution images, and a Local Supervision Module (LSM), which is train-only but can significantly enhance the perception of local contents. Extensive experiments demonstrate that UNet-Mamba outperforms the state-of-the-art methods with the mIoU increased by 0.87% on LoveDA and 0.36% on ISPRS Vaihingen, while achieving high efficiency through light weight, low memory footprint and low computational cost. The source code will soon be publicly available at https://github.com/EnzeZhu2001/UNetMamba.