Abstract:Existing certified training methods can only train models to be robust against a certain perturbation type (e.g. $l_\infty$ or $l_2$). However, an $l_\infty$ certifiably robust model may not be certifiably robust against $l_2$ perturbation (and vice versa) and also has low robustness against other perturbations (e.g. geometric transformation). To this end, we propose the first multi-norm certified training framework \textbf{CURE}, consisting of a new $l_2$ deterministic certified training defense and several multi-norm certified training methods, to attain better \emph{union robustness} when training from scratch or fine-tuning a pre-trained certified model. Further, we devise bound alignment and connect natural training with certified training for better union robustness. Compared with SOTA certified training, \textbf{CURE} improves union robustness up to $22.8\%$ on MNIST, $23.9\%$ on CIFAR-10, and $8.0\%$ on TinyImagenet. Further, it leads to better generalization on a diverse set of challenging unseen geometric perturbations, up to $6.8\%$ on CIFAR-10. Overall, our contributions pave a path towards \textit{universal certified robustness}.
Abstract:There is considerable work on improving robustness against adversarial attacks bounded by a single $l_p$ norm using adversarial training (AT). However, the multiple-norm robustness (union accuracy) of AT models is still low. We observe that simultaneously obtaining good union and clean accuracy is hard since there are tradeoffs between robustness against multiple $l_p$ perturbations, and accuracy/robustness/efficiency. By analyzing the tradeoffs from the lens of distribution shifts, we identify the key tradeoff pair among $l_p$ attacks to boost efficiency and design a logit pairing loss to improve the union accuracy. Next, we connect natural training with AT via gradient projection, to find and incorporate useful information from natural training into AT, which moderates the accuracy/robustness tradeoff. Combining our contributions, we propose a framework called \textbf{RAMP}, to boost the robustness against multiple $l_p$ perturbations. We show \textbf{RAMP} can be easily adapted for both robust fine-tuning and full AT. For robust fine-tuning, \textbf{RAMP} obtains a union accuracy up to $53.5\%$ on CIFAR-10, and $29.7\%$ on ImageNet. For training from scratch, \textbf{RAMP} achieves SOTA union accuracy of $44.6\%$ and relatively good clean accuracy of $81.2\%$ on ResNet-18 against AutoAttack on CIFAR-10.
Abstract:Federated Domain Adaptation (FDA) describes the federated learning setting where a set of source clients work collaboratively to improve the performance of a target client and where the target client has limited labeled data. The domain shift between the source and target domains, combined with limited samples in the target domain, makes FDA a challenging problem, e.g., common techniques such as FedAvg and fine-tuning fail with a large domain shift. To fill this gap, we propose Federated Gradient Projection ($\texttt{FedGP}$), a novel aggregation rule for FDA, used to aggregate the source gradients and target gradient during training. Further, we introduce metrics that characterize the FDA setting and propose a theoretical framework for analyzing the performance of aggregation rules, which may be of independent interest. Using this framework, we theoretically characterize how, when, and why $\texttt{FedGP}$ works compared to baselines. Our theory suggests certain practical rules that are predictive of practice. Experiments on synthetic and real-world datasets verify the theoretical insights and illustrate the effectiveness of the proposed method in practice.