Abstract:Recently, Vision Transformers (ViTs) have achieved unprecedented effectiveness in the general domain of image classification. Nonetheless, these models remain underexplored in the field of deepfake detection, given their lower performance as compared to Convolution Neural Networks (CNNs) in that specific context. In this paper, we start by investigating why plain ViT architectures exhibit a suboptimal performance when dealing with the detection of facial forgeries. Our analysis reveals that, as compared to CNNs, ViT struggles to model localized forgery artifacts that typically characterize deepfakes. Based on this observation, we propose a deepfake detection framework called FakeFormer, which extends ViTs to enforce the extraction of subtle inconsistency-prone information. For that purpose, an explicit attention learning guided by artifact-vulnerable patches and tailored to ViTs is introduced. Extensive experiments are conducted on diverse well-known datasets, including FF++, Celeb-DF, WildDeepfake, DFD, DFDCP, and DFDC. The results show that FakeFormer outperforms the state-of-the-art in terms of generalization and computational cost, without the need for large-scale training datasets. The code is available at \url{https://github.com/10Ring/FakeFormer}.
Abstract:Explainability in artificial intelligence is crucial for restoring trust, particularly in areas like face forgery detection, where viewers often struggle to distinguish between real and fabricated content. Vision and Large Language Models (VLLM) bridge computer vision and natural language, offering numerous applications driven by strong common-sense reasoning. Despite their success in various tasks, the potential of vision and language remains underexplored in face forgery detection, where they hold promise for enhancing explainability by leveraging the intrinsic reasoning capabilities of language to analyse fine-grained manipulation areas. As such, there is a need for a methodology that converts face forgery detection to a Visual Question Answering (VQA) task to systematically and fairly evaluate these capabilities. Previous efforts for unified benchmarks in deepfake detection have focused on the simpler binary task, overlooking evaluation protocols for fine-grained detection and text-generative models. We propose a multi-staged approach that diverges from the traditional binary decision paradigm to address this gap. In the first stage, we assess the models' performance on the binary task and their sensitivity to given instructions using several prompts. In the second stage, we delve deeper into fine-grained detection by identifying areas of manipulation in a multiple-choice VQA setting. In the third stage, we convert the fine-grained detection to an open-ended question and compare several matching strategies for the multi-label classification task. Finally, we qualitatively evaluate the fine-grained responses of the VLLMs included in the benchmark. We apply our benchmark to several popular models, providing a detailed comparison of binary, multiple-choice, and open-ended VQA evaluation across seven datasets. \url{https://nickyfot.github.io/hitchhickersguide.github.io/}
Abstract:Existing methods on audio-visual deepfake detection mainly focus on high-level features for modeling inconsistencies between audio and visual data. As a result, these approaches usually overlook finer audio-visual artifacts, which are inherent to deepfakes. Herein, we propose the introduction of fine-grained mechanisms for detecting subtle artifacts in both spatial and temporal domains. First, we introduce a local audio-visual model capable of capturing small spatial regions that are prone to inconsistencies with audio. For that purpose, a fine-grained mechanism based on a spatially-local distance coupled with an attention module is adopted. Second, we introduce a temporally-local pseudo-fake augmentation to include samples incorporating subtle temporal inconsistencies in our training set. Experiments on the DFDC and the FakeAVCeleb datasets demonstrate the superiority of the proposed method in terms of generalization as compared to the state-of-the-art under both in-dataset and cross-dataset settings.
Abstract:In this paper, we propose an enhanced audio-visual deep detection method. Recent methods in audio-visual deepfake detection mostly assess the synchronization between audio and visual features. Although they have shown promising results, they are based on the maximization/minimization of isolated feature distances without considering feature statistics. Moreover, they rely on cumbersome deep learning architectures and are heavily dependent on empirically fixed hyperparameters. Herein, to overcome these limitations, we propose: (1) a statistical feature loss to enhance the discrimination capability of the model, instead of relying solely on feature distances; (2) using the waveform for describing the audio as a replacement of frequency-based representations; (3) a post-processing normalization of the fakeness score; (4) the use of shallower network for reducing the computational complexity. Experiments on the DFDC and FakeAVCeleb datasets demonstrate the relevance of the proposed method.
Abstract:The availability of highly convincing audio deepfake generators highlights the need for designing robust audio deepfake detectors. Existing works often rely solely on real and fake data available in the training set, which may lead to overfitting, thereby reducing the robustness to unseen manipulations. To enhance the generalization capabilities of audio deepfake detectors, we propose a novel augmentation method for generating audio pseudo-fakes targeting the decision boundary of the model. Inspired by adversarial attacks, we perturb original real data to synthesize pseudo-fakes with ambiguous prediction probabilities. Comprehensive experiments on two well-known architectures demonstrate that the proposed augmentation contributes to improving the generalization capabilities of these architectures.
Abstract:This paper introduces a novel approach for high-quality deepfake detection called Localized Artifact Attention Network (LAA-Net). Existing methods for high-quality deepfake detection are mainly based on a supervised binary classifier coupled with an implicit attention mechanism. As a result, they do not generalize well to unseen manipulations. To handle this issue, two main contributions are made. First, an explicit attention mechanism within a multi-task learning framework is proposed. By combining heatmap-based and self-consistency attention strategies, LAA-Net is forced to focus on a few small artifact-prone vulnerable regions. Second, an Enhanced Feature Pyramid Network (E-FPN) is proposed as a simple and effective mechanism for spreading discriminative low-level features into the final feature output, with the advantage of limiting redundancy. Experiments performed on several benchmarks show the superiority of our approach in terms of Area Under the Curve (AUC) and Average Precision (AP). The code will be released soon.
Abstract:In recent years, deep learning (DL) has shown great potential in the field of dermatological image analysis. However, existing datasets in this domain have significant limitations, including a small number of image samples, limited disease conditions, insufficient annotations, and non-standardized image acquisitions. To address these shortcomings, we propose a novel framework called DermSynth3D. DermSynth3D blends skin disease patterns onto 3D textured meshes of human subjects using a differentiable renderer and generates 2D images from various camera viewpoints under chosen lighting conditions in diverse background scenes. Our method adheres to top-down rules that constrain the blending and rendering process to create 2D images with skin conditions that mimic in-the-wild acquisitions, ensuring more meaningful results. The framework generates photo-realistic 2D dermoscopy images and the corresponding dense annotations for semantic segmentation of the skin, skin conditions, body parts, bounding boxes around lesions, depth maps, and other 3D scene parameters, such as camera position and lighting conditions. DermSynth3D allows for the creation of custom datasets for various dermatology tasks. We demonstrate the effectiveness of data generated using DermSynth3D by training DL models on synthetic data and evaluating them on various dermatology tasks using real 2D dermatological images. We make our code publicly available at https://github.com/sfu-mial/DermSynth3D.
Abstract:In this paper, a discriminator-free adversarial-based Unsupervised Domain Adaptation (UDA) for Multi-Label Image Classification (MLIC) referred to as DDA-MLIC is proposed. Over the last two years, some attempts have been made for introducing adversarial-based UDA methods in the context of MLIC. However, these methods which rely on an additional discriminator subnet present two shortcomings. First, the learning of domain-invariant features may harm their task-specific discriminative power, since the classification and discrimination tasks are decoupled. Moreover, the use of an additional discriminator usually induces an increase of the network size. Herein, we propose to overcome these issues by introducing a novel adversarial critic that is directly deduced from the task-specific classifier. Specifically, a two-component Gaussian Mixture Model (GMM) is fitted on the source and target predictions, allowing the distinction of two clusters. This allows extracting a Gaussian distribution for each component. The resulting Gaussian distributions are then used for formulating an adversarial loss based on a Frechet distance. The proposed method is evaluated on three multi-label image datasets. The obtained results demonstrate that DDA-MLIC outperforms existing state-of-the-art methods while requiring a lower number of parameters.
Abstract:This paper proposes an adaptive graph-based approach for multi-label image classification. Graph-based methods have been largely exploited in the field of multi-label classification, given their ability to model label correlations. Specifically, their effectiveness has been proven not only when considering a single domain but also when taking into account multiple domains. However, the topology of the used graph is not optimal as it is pre-defined heuristically. In addition, consecutive Graph Convolutional Network (GCN) aggregations tend to destroy the feature similarity. To overcome these issues, an architecture for learning the graph connectivity in an end-to-end fashion is introduced. This is done by integrating an attention-based mechanism and a similarity-preserving strategy. The proposed framework is then extended to multiple domains using an adversarial training scheme. Numerous experiments are reported on well-known single-domain and multi-domain benchmarks. The results demonstrate that our approach outperforms the state-of-the-art in terms of mean Average Precision (mAP) and model size.
Abstract:Unsupervised anomaly detection in time-series has been extensively investigated in the literature. Notwithstanding the relevance of this topic in numerous application fields, a complete and extensive evaluation of recent state-of-the-art techniques is still missing. Few efforts have been made to compare existing unsupervised time-series anomaly detection methods rigorously. However, only standard performance metrics, namely precision, recall, and F1-score are usually considered. Essential aspects for assessing their practical relevance are therefore neglected. This paper proposes an original and in-depth evaluation study of recent unsupervised anomaly detection techniques in time-series. Instead of relying solely on standard performance metrics, additional yet informative metrics and protocols are taken into account. In particular, (1) more elaborate performance metrics specifically tailored for time-series are used; (2) the model size and the model stability are studied; (3) an analysis of the tested approaches with respect to the anomaly type is provided; and (4) a clear and unique protocol is followed for all experiments. Overall, this extensive analysis aims to assess the maturity of state-of-the-art time-series anomaly detection, give insights regarding their applicability under real-world setups and provide to the community a more complete evaluation protocol.