Abstract:Annotating a multilingual code-switched corpus is a painstaking process requiring specialist linguistic expertise. This is partly due to the large number of language combinations that may appear within and across utterances, which might require several annotators with different linguistic expertise to consider an utterance sequentially. This is time-consuming and costly. It would be useful if the spoken languages in an utterance and the boundaries thereof were known before annotation commences, to allow segments to be assigned to the relevant language experts in parallel. To address this, we investigate the development of a continuous multilingual language diarizer using fine-tuned speech representations extracted from a large pre-trained self-supervised architecture (WavLM). We experiment with a code-switched corpus consisting of five South African languages (isiZulu, isiXhosa, Setswana, Sesotho and English) and show substantial diarization error rate improvements for language families, language groups, and individual languages over baseline systems.
Abstract:We analyse the geometric instability of embeddings produced by graph neural networks (GNNs). Existing methods are only applicable for small graphs and lack context in the graph domain. We propose a simple, efficient and graph-native Graph Gram Index (GGI) to measure such instability which is invariant to permutation, orthogonal transformation, translation and order of evaluation. This allows us to study the varying instability behaviour of GNN embeddings on large graphs for both node classification and link prediction.