Abstract:We analyse the geometric instability of embeddings produced by graph neural networks (GNNs). Existing methods are only applicable for small graphs and lack context in the graph domain. We propose a simple, efficient and graph-native Graph Gram Index (GGI) to measure such instability which is invariant to permutation, orthogonal transformation, translation and order of evaluation. This allows us to study the varying instability behaviour of GNN embeddings on large graphs for both node classification and link prediction.
Abstract:In this paper, we explore the performance of different pruning methods in the context of the lottery ticket hypothesis. We compare the performance of L1 unstructured pruning, Fisher pruning, and random pruning on different network architectures and pruning scenarios. The experiments include an evaluation of one-shot and iterative pruning, an examination of weight movement in the network during pruning, a comparison of the pruning methods on networks of varying widths, and an analysis of the performance of the methods when the network becomes very sparse. Additionally, we propose and evaluate a new method for efficient computation of Fisher pruning, known as batched Fisher pruning.