Abstract:Understanding career trajectories -- the sequences of jobs that individuals hold over their working lives -- is important to economists for studying labor markets. In the past, economists have estimated relevant quantities by fitting predictive models to small surveys, but in recent years large datasets of online resumes have also become available. These new datasets provide job sequences of many more individuals, but they are too large and complex for standard econometric modeling. To this end, we adapt ideas from modern language modeling to the analysis of large-scale job sequence data. We develop CAREER, a transformer-based model that learns a low-dimensional representation of an individual's job history. This representation can be used to predict jobs directly on a large dataset, or can be "transferred" to represent jobs in smaller and better-curated datasets. We fit the model to a large dataset of resumes, 24 million people who are involved in more than a thousand unique occupations. It forms accurate predictions on held-out data, and it learns useful career representations that can be fine-tuned to make accurate predictions on common economics datasets.