Abstract:Portfolio management is an essential part of investment decision-making. However, traditional methods often fail to deliver reasonable performance. This problem stems from the inability of these methods to account for the unique characteristics of multivariate time series data from stock markets. We present a two-stage method for constructing an investment portfolio of common stocks. The method involves the generation of time series representations followed by their subsequent clustering. Our approach utilizes features based on Topological Data Analysis (TDA) for the generation of representations, allowing us to elucidate the topological structure within the data. Experimental results show that our proposed system outperforms other methods. This superior performance is consistent over different time frames, suggesting the viability of TDA as a powerful tool for portfolio selection.
Abstract:Conventional collaborative filtering techniques don't take into consideration the effect of discrepancy in users' rating perception. Some users may rarely give 5 stars to items while others almost always assign 5 stars to the chosen item. Even if they had experience with the same items this systematic discrepancy in their evaluation style will lead to the systematic errors in the ability of recommender system to effectively extract right patterns from data. To mitigate this problem we introduce the ratings' similarity matrix which represents the dependency between different values of ratings on the population level. Hence, if on average the correlations between ratings exist, it is possible to improve the quality of proposed recommendations by off-setting the effect of either shifted down or shifted up users' rates.