Abstract:We introduce new large labeled datasets on bias in 3 languages and show in experiments that bias exists in all 10 datasets of 5 languages evaluated, including benchmark datasets on the English GLUE/SuperGLUE leaderboards. The 3 new languages give a total of almost 6 million labeled samples and we benchmark on these datasets using SotA multilingual pretrained models: mT5 and mBERT. The challenge of social bias, based on prejudice, is ubiquitous, as recent events with AI and large language models (LLMs) have shown. Motivated by this challenge, we set out to estimate bias in multiple datasets. We compare some recent bias metrics and use bipol, which has explainability in the metric. We also confirm the unverified assumption that bias exists in toxic comments by randomly sampling 200 samples from a toxic dataset population using the confidence level of 95% and error margin of 7%. Thirty gold samples were randomly distributed in the 200 samples to secure the quality of the annotation. Our findings confirm that many of the datasets have male bias (prejudice against women), besides other types of bias. We publicly release our new datasets, lexica, models, and codes.
Abstract:In this work, we provide insight into one important limitation of large language models (LLMs), i.e. false attribution, and introduce a new hallucination metric - Simple Hallucination Index (SHI). The task of automatic author attribution for relatively small chunks of text is an important NLP task but can be challenging. We empirically evaluate the power of 3 open SotA LLMs in zero-shot setting (LLaMA-2-13B, Mixtral 8x7B, and Gemma-7B), especially as human annotation can be costly. We collected the top 10 most popular books, according to Project Gutenberg, divided each one into equal chunks of 400 words, and asked each LLM to predict the author. We then randomly sampled 162 chunks for human evaluation from each of the annotated books, based on the error margin of 7% and a confidence level of 95% for the book with the most chunks (Great Expectations by Charles Dickens, having 922 chunks). The average results show that Mixtral 8x7B has the highest prediction accuracy, the lowest SHI, and a Pearson's correlation (r) of 0.737, 0.249, and -0.9996, respectively, followed by LLaMA-2-13B and Gemma-7B. However, Mixtral 8x7B suffers from high hallucinations for 3 books, rising as high as an SHI of 0.87 (in the range 0-1, where 1 is the worst). The strong negative correlation of accuracy and SHI, given by r, demonstrates the fidelity of the new hallucination metric, which is generalizable to other tasks. We publicly release the annotated chunks of data and our codes to aid the reproducibility and evaluation of other models.
Abstract:We introduce Instruction Document Visual Question Answering (iDocVQA) dataset and Large Language Document (LLaDoc) model, for training Language-Vision (LV) models for document analysis and predictions on document images, respectively. Usually, deep neural networks for the DocVQA task are trained on datasets lacking instructions. We show that using instruction-following datasets improves performance. We compare performance across document-related datasets using the recent state-of-the-art (SotA) Large Language and Vision Assistant (LLaVA)1.5 as the base model. We also evaluate the performance of the derived models for object hallucination using the Polling-based Object Probing Evaluation (POPE) dataset. The results show that instruction-tuning performance ranges from 11X to 32X of zero-shot performance and from 0.1% to 4.2% over non-instruction (traditional task) finetuning. Despite the gains, these still fall short of human performance (94.36%), implying there's much room for improvement.
Abstract:We introduce a novel writing method called Probing Chain of Thought (ProCoT), which prevents students from cheating using a Large Language Model (LLM), such as ChatGPT, while enhancing their active learning through such models. LLMs have disrupted education and many other feilds. For fear of students cheating, many educationists have resorted to banning their use, as their outputs can be human-like and hard to detect in some cases. These LLMs are also known for hallucinations (i.e. fake facts). We conduct studies with ProCoT in two different courses with a combined total of about 66 students. The students in each course were asked to prompt an LLM of their choice with one question from a set of four and required to affirm or refute statements in the LLM output by using peer reviewed references. The results show two things: (1) ProCoT stimulates creative/critical thinking and writing of students through engagement with LLMs when we compare the LLM solely output to ProCoT output and (2) ProCoT can prevent cheating because of clear limitations in existing LLMs when we compare students ProCoT output to LLM ProCoT output. We also discover that most students prefer to give answers in fewer words than LLMs, which are typically verbose. The average word counts for students, ChatGPT (v3.5) and Phind (v8) are 208, 391 and 383, respectively.