Abstract:Fun acts as a catalyst for learning by enhancing motivation, active engagement and knowledge retention. As social robots gain traction as educational tools, understanding how their unique affordances can be leveraged to cultivate fun becomes crucial. This research investigates the concept of fun in educational games involving social robots to support the design of REMind:a robot-mediated role-play game aimed at encouraging bystander intervention against peer bullying among children. To incorporate fun elements into design of REMind, we conducted a user-centered Research through Design (RtD) study with focus groups of children to gain a deeper understanding of their perceptions of fun. We analyzed children's ideas by using Framework Analysis and leveraging LeBlanc's Taxonomy of Game Pleasures and identified 28 elements of fun that can be incorporated into robot-mediated games. We present our observations, discuss their impact on REMind's design, and offer recommendations for designing fun educational games using social robots.
Abstract:In this paper, we investigate the use of 'prosody' (the musical elements of speech) as a communicative signal for intuitive human-robot interaction interfaces. Our approach, rooted in Research through Design (RtD), examines the application of prosody in directing a quadruped robot navigation. We involved ten team members in an experiment to command a robot through an obstacle course using natural interaction. A human operator, serving as the robot's sensory and processing proxy, translated human communication into a basic set of navigation commands, effectively simulating an intuitive interface. During our analysis of interaction videos, when lexical and visual cues proved insufficient for accurate command interpretation, we turned to non-verbal auditory cues. Qualitative evidence suggests that participants intuitively relied on prosody to control robot navigation. We highlight specific distinct prosodic constructs that emerged from this preliminary exploration and discuss their pragmatic functions. This work contributes a discussion on the broader potential of prosody as a multifunctional communicative signal for designing future intuitive robotic interfaces, enabling lifelong learning and personalization in human-robot interaction.