Abstract:It is important to find the target as soon as possible for search and rescue operations. Surveillance camera systems and unmanned aerial vehicles (UAVs) are used to support search and rescue. Automatic object detection is important because a person cannot monitor multiple surveillance screens simultaneously for 24 hours. Also, the object is often too small to be recognized by the human eye on the surveillance screen. This study used UAVs around the Port of Houston and fixed surveillance cameras to build an automatic target detection system that supports the US Coast Guard (USCG) to help find targets (e.g., person overboard). We combined image segmentation, enhancement, and convolution neural networks to reduce detection time to detect small targets. We compared the performance between the auto-detection system and the human eye. Our system detected the target within 8 seconds, but the human eye detected the target within 25 seconds. Our systems also used synthetic data generation and data augmentation techniques to improve target detection accuracy. This solution may help the search and rescue operations of the first responders in a timely manner.
Abstract:Transcribing voice communications in NASA's launch control center is important for information utilization. However, automatic speech recognition in this environment is particularly challenging due to the lack of training data, unfamiliar words in acronyms, multiple different speakers and accents, and conversational characteristics of speaking. We used bidirectional deep recurrent neural networks to train and test speech recognition performance. We showed that data augmentation and custom language models can improve speech recognition accuracy. Transcribing communications from the launch control center will help the machine analyze information and accelerate knowledge generation.
Abstract:Firefighters suffer a variety of life-threatening risks, including line-of-duty deaths, injuries, and exposures to hazardous substances. Support for reducing these risks is important. We built a partially occluded object reconstruction method on augmented reality glasses for first responders. We used a deep learning based on conditional generative adversarial networks to train associations between the various images of flammable and hazardous objects and their partially occluded counterparts. Our system then reconstructed an image of a new flammable object. Finally, the reconstructed image was superimposed on the input image to provide "transparency". The system imitates human learning about the laws of physics through experience by learning the shape of flammable objects and the flame characteristics.