Abstract:Mobile robot navigation systems are increasingly relied upon in dynamic and complex environments, yet they often struggle with map inaccuracies and the resulting inefficient path planning. This paper presents MRHaD, a Mixed Reality-based Hand-drawn Map Editing Interface that enables intuitive, real-time map modifications through natural hand gestures. By integrating the MR head-mounted display with the robotic navigation system, operators can directly create hand-drawn restricted zones (HRZ), thereby bridging the gap between 2D map representations and the real-world environment. Comparative experiments against conventional 2D editing methods demonstrate that MRHaD significantly improves editing efficiency, map accuracy, and overall usability, contributing to safer and more efficient mobile robot operations. The proposed approach provides a robust technical foundation for advancing human-robot collaboration and establishing innovative interaction models that enhance the hybrid future of robotics and human society. For additional material, please check: https://mertcookimg.github.io/mrhad/
Abstract:Recent advancements in robotics have led to the development of numerous interfaces to enhance the intuitiveness of robot navigation. However, the reliance on traditional 2D displays imposes limitations on the simultaneous visualization of information. Mixed Reality (MR) technology addresses this issue by enhancing the dimensionality of information visualization, allowing users to perceive multiple pieces of information concurrently. This paper proposes Mixed reality-based robot navigation interface using an optical-see-through MR-beacon (MRNaB), a novel approach that incorporates an MR-beacon, situated atop the real-world environment, to function as a signal transmitter for robot navigation. This MR-beacon is designed to be persistent, eliminating the need for repeated navigation inputs for the same location. Our system is mainly constructed into four primary functions: "Add", "Move", "Delete", and "Select". These allow for the addition of a MR-beacon, location movement, its deletion, and the selection of MR-beacon for navigation purposes, respectively. The effectiveness of the proposed method was then validated through experiments by comparing it with the traditional 2D system. As the result, MRNaB was proven to increase the performance of the user when doing navigation to a certain place subjectively and objectively. For additional material, please check: https://mertcookimg.github.io/mrnab